

Imagine the result

Sediment Remedial Investigation Report

General Motors LLC Former General Motors Assembly Plant Site Sleepy Hollow, New York

January 2012

Mark Gravelding, P.E.

Professional Engineer, NY PE #069985-1

I certify that I am currently a NYS registered professional engineer and that this Sediment Remedial Investigation Report was prepared in accordance with all applicable statutes and regulations and in substantial conformance with the DER Technical Guidance for Site Investigation and Remediation (DER-10) and that all activities were performed in full accordance with the DER-approved work plan and any DER-approved modifications.

Sediment Remedial Investigation Report

Former General Motors Assembly Plant Site Sleepy Hollow, New York

Prepared for: General Motors LLC

Prepared by: ARCADIS of New York, Inc. 6723 Towpath Road P O Box 66 Syracuse New York 13214-0066 Tel 315 446 9120 Fax 315 449 0017

Our Ref.: B0064462.0001

Date: January 2012

Sediment Remedial Investigation Report

Former General Motors Assembly Plant Site Sleepy Hollow, New York

HK.R

David K. Rigg Principal Scientist

Paymond MKapp

Raymond M. Kapp Principal Scientist Project Manager

1.	Intro	oduction a	nd Purpose	1
2.	Site	Descriptio	on and History	6
	2.1	Site Desc	ription and Land Use	6
	2.2	Site Wate	erfront History	7
3.	Obje	ectives, So	cope and Rationale	9
	3.1	Objective	S	9
	3.2	Scope an	d Rationale	10
4.	Hist	oric Huds	on River Sediment Investigations	12
	4.1	1997 Sed	liment Investigation (Exponent)	12
		4.1.1	Sample Locations	12
		4.1.2	Sample Methods	13
		4.1.3	Analyses	13
		4.1.4	Results	13
	4.2	2000/200	1 Regional Sediment Investigation (Versar)	13
		4.2.1	Sample Locations	13
		4.2.2	Sample Methods	14
		4.2.3	Analyses	14
		4.2.4	Results	14
5.	Pha	se I (2004)	Sediment Investigation	15
	5.1	Sample L	ocations	15
	5.2	Sampling	Methods	16
	5.3	Analyses		16
	5.4	Quality As	ssurance/Quality Control	17
		5.4.1	Field QA/QC	17
		5.4.2	Laboratory QA/QC	18
		5.4.3	Laboratory Data QA/AC	18

	5.5	Results		19		
6.	Eval	uation of	the Phase I Data	20		
	6.1	Relevant	Sediment Data	20		
	6.2	Outlier A	nalysis	21		
	6.3	Comparis	on to Background Concentrations	22		
	6.4	Comparis	on to NYSDEC Sediment Criteria	25		
	6.5	Sedimen	Ranking	28		
		6.5.1	PCBs and PAHs	29		
	6.6	Phase I E	valuation Summary	30		
7.	Phas	se II (2006) Sediment Investigation	33		
	7.1	Sampling	34			
	7.2	Sampling Methods				
	7.3	Analyses - Surface Sediment				
	7.4	Analyses	- Subsurface Sediment	38		
	7.5	Quality A	ssurance/Quality Control	39		
		7.5.1	Field QA/QC	39		
		7.5.2	Laboratory QA/QC	40		
		7.5.3	Laboratory Data QA/QC	40		
8.	Eval	Evaluation of the Phase II Sediment Data				
	8.1	Surface S	Sediment Chemistry Data	42		
	8.2	Background Evaluation				
	8.3	Surface Sediment Toxicity Benchmark Data				
		8.3.1	AVS/SEM, and TOC Data	44		
		8.3.2	Pore Water Data	45		
	8.4	Bulk Sed	ment Toxicity Testing	47		
		8.4.1	Survival Tolerance Limit	48		

		8.4.2	Growth Tolerance Limit	49
		8.4.3	Reproduction Tolerance Limit	49
	8.5	Benthic Macro	pinvertebrate Community Assessment	49
	8.6	Bivalve Tissue	e	51
	8.7	Weight of Evic	dence Evaluation	52
		8.7.1	Line of Evidence No. 1 – Sediment Chemistry	53
		8.7.2	Line of Evidence No. 2 – Bioaccumulation Data	54
		8.7.3	Line of Evidence No. 3 – Sediment Toxicity	54
		8.7.4	Line of Evidence No. 4 – Benthic Community Indices	55
		8.7.5	Weight of Evidence Summary	55
9.	Evalu	ation of Pha	se II Subsurface Sediment Data	57
	9.1	Subsurface S	ediment Chemistry Data	57
		9.1.1	Background Data	57
		9.1.2	Near-Site Area Data	58
		9.1.3	OF-1 Data	59
	9.2	Subsurface S	ediment Geochronology Data	60
	9.3	Sediment Gra	in Size and Geotechnical Characteristics	62
		9.3.1	Surface Sediment Grain Size Data	62
		9.3.2	Subsurface Sediment Geotechnical Data	62
10.	Quali	tative Huma	n Health Exposure Assessment	64
	10.1	Introduction		64
	10.2	Environmenta	I Setting	64
	10.3	Constituents of	of Potential Concern	65
	10.4	Potential Reco	eptors, Exposure Points, and Exposure Pathways	65
		10.4.1	Sources and Transport Mechanisms	66
		10.4.2	Receptors	66
		10.4.3	Exposure Points	67

		10.4.4	4	Exposure Pathways Evaluation	68
11.	Fish	and W	/ildlife	Resource Impact Assessment	69
	11.1	Site D	Descripti	on	69
	11.2	Ecolo	gical Ch	naracterization	70
	11.3	Fish a	and Wilc	llife Resources	70
		11.3.1	1	Threatened/Endangered Species and Significant Habitat	71
		11.3.2	2	Observations of Stress	71
	11.4	Fish a	and Wild	llife Resources Values	72
		11.4.1	1	Value of Habitat to Associated Fauna	72
		11.4.2	2	Value of Resources to Humans	72
	11.5	Pathw	vay Ana	lysis	72
	11.6	Summ	nary and	d Conclusions	73
12.	Cond	clusion	ns and	Recommendations	74
	12.1	Phase	e I Findi	ngs	74
	12.2	Phase	e II Find	ings	75
	12.3	Recor	mmenda	ations	77
13.	Refe	rences	6		78
Table	es				
	Table	1	Sample	e Matrix Summary – 1997-2004 Study	
	Table	2	Sedim	ent Data - Near-Site Locations - 1997-2004 Study	
	Table	3	Sedim	ent Data - Background Locations – 1997-2004 Study	

- Table 4
 Sediment Data Outlier Analysis 1997-2004 Study
- Table 5Water Quality Data 2004 Study
- Table 6
 Cumulative Site Ranking COPCs from 1997-2004 Study
- Table 7
 Sample Matrix Summary 2006 Study
- Table 8
 Sediment Data Near-Site Locations 2006 Study

Table of Contents

Table 9	Sediment Data - Background Locations – 2006 Study
Table 10	Pore Water Data - Near-Site Locations
Table 11	Pore Water Data - Background Locations
Table 12	Pore Water Data Summary
Table 13	Sediment Toxicity Data - Near-Site and Background Locations
Table 14	Background Toxicity Tolerance Limit Summary
Table 15	Benthic Macroinvertebrate Survey - Community Data
Table 16	Benthic Macroinvertebrate Survey - Species Characteristics
Table 17	Benthic Macroinvertebrate Survey - Summary Metrics
Table 18	Benthic Macroinvertebrate Survey - Water Quality Data
Table 19	Biological Tissue Data – Near-Site and Background Locations
Table 20	Weight-of-Evidence Summary – 2006 Data Study
Table 21	Subsurface Sediment Data – Background Locations
Table 22	Subsurface Sediment Data – Near-Site Locations
Table 23	Subsurface Sediment Data – Locations Near OF-1
Table 24	Surface Sediment Grain size Data - Near-Site Locations
Table 25	Surface Sediment Grain size Data - Background Locations
Table 26	Sediment Chronology Data - Near-Site Locations
Table 27	Sediment Chronology Data - Background Location
Table 28	Geotechnical Testing Data

Figures

Figure 1A	Site Location Map
Figure 1B	Existing Aerial Photograph
Figure 1C	Existing Conditions
Figure 1D	Amended Riverfront Development Concept Plan
Figure 2	1997-2004 Background Sample Locations
Figure 3	1997-2004 Near-Site Sample Locations

- Figure 4 2006 Background Sample Locations
- Figure 5 2006 Near-Site Sample Locations
- Figure 6 1997 Sediment Data Segment 1
- Figure 7 1997 Sediment Data Segment 2
- Figure 8 1997 Sediment Data Segment 3
- Figure 9 1997 Sediment Data Segment 4
- Figure 10 2004 Sediment Data Segment 1
- Figure 11 2004 Sediment Data Segment 2
- Figure 12 2004 Sediment Data Segment 3
- Figure 13 2006 Sediment Data Segment 1
- Figure 14 2006 Sediment Data Segment 2
- Figure 15 2006 Sediment Data Segment 3
- Figure 16 2006 Sediment Data Segment 4
- Figure 17 Leptocheirus Percent Survival
- Figure 18 Leptocheirus Growth
- Figure 19 Leptocheirus Juveniles per Amphipod
- Figure 20 Leptocheirus Offspring per Female
- Figure 21 Total Number of Organisms
- Figure 22 Margalef Species Richness
- Figure 23 Abundance of Epifauna (%)
- Figure 24 Number of Infauna Species
- Figure 25 Number of Polychaete Species
- Figure 26 Abundance of Suspension Feeders (# Organisms/m²)
- Figure 27 Shannon-Wiener Diversity Index
- Figure 28 COPC Concentrations in Bivalve Tissue
- Figure 29 COPC Concentration Profiles in Deep Cores Background Locations
- Figure 30 COPC Concentration Profiles in Deep Cores Near-Site Locations

Table of Contents

Figure 31	COPC Concentration Profiles in Deep Cores – OF-1 Grid
Figure 32	COPC Concentration Profiles by Elevation – OF-1 Cross Section AA'
Figure 33	COPC Concentration Profiles by Elevation – OF-1 Cross Section BB'

Appendices

- A Sampling logs 2004 Sampling Logs 2006
- B Sampling Logs 2006
- C Statistical Calculations and Analysis
- D Final Report Radiological Sediment Chronology Sediment Characterization – Geonuclear/Mass Spec Services

Sediment Remedial Investigation Report

Former General Motors Assembly Plant Site Sleepy Hollow, New York

1. Introduction and Purpose

This Sediment Remedial Investigation Report (RI Report) has been prepared by ARCADIS on behalf of General Motors LLC (GM LLC), in accordance with Brownfield Cleanup Agreements (BCAs) with the New York State Department of Environmental Conservation (NYSDEC) for the investigation and remediation of the Former General Motors North Tarrytown Assembly Plant Site located at 199 Beekman Avenue, Village of Sleepy Hollow, New York (Site).

The contemplated use of the Site is mixed commercial and restricted residential development, with public open space, including public access to the waterfront and municipal public works operations. The Site is located in the Village of Sleepy Hollow's RF – Riverfront Development Zoning district, which allows for a mixed use development of residential and commercial properties consistent with the RF zoning, as determined by the Village of Sleepy Hollow, lead Agency for State Environmental Quality Review (SEQR) of the proposed redevelopment of the Site (Findings Resolution adopted by the Village on July 24, 2007 and 2011 Amended Findings Resolution adopted January 25, 2011).

The Site is situated on the eastern shore of the Hudson River (Figure 1A) and occupies an area of approximately 96.2 acres within the Village of Sleepy Hollow (Figure 1B). It comprises three, non-contiguous parcels: 1) former main assembly plant area referred to as the West Parcel (approximately 66.2 acres); 2) eastern parking lot referred to as the East Parcel (approximately 28.3 acres); and 3) former salaried employee parking lot referred to as the South Parcel (approximately 1.7 acres).

General Motors Corporation (GMC) and their development partner Roseland/Sleepy Hollow, LLC (Roseland) initiated formal NYSDEC review of Site environmental conditions in a Voluntary Cleanup Agreement (VCA) signed in November 2002. The VCA applied to the entire Site and included investigation of the Hudson River adjacent to the West Parcel. In June 2004, the project transitioned from the Voluntary Cleanup Program to the Brownfield Cleanup Program (BCP). As part of that transition, two separate BCAs were signed in May 2005, one for the East Parcel and the other for the West Parcel. The BCA for the West Parcel also includes the South Parcel and the Hudson River as an identified offsite area of interest to the West Parcel. On April 1, 2009, Roseland terminated its participation in the BCAs and the Site redevelopment. On June 1, 2009, GMC filed for bankruptcy. On July 10, 2009, in accordance with an order from the Bankruptcy court, GMC changed its name to Motors Liquidation Company (MLC) and sold its interest in the Sleepy Hollow site to a newly formed

Sediment Remedial Investigation Report

Former General Motors Assembly Plant Site Sleepy Hollow, New York

company, GM LLC. GM LLC signed two BCAs in 2010 that superseded the two previous BCAs signed by GMC and Roseland.

GM and Roseland initiated formal NYSDEC review of Site environmental conditions as Volunteers in a Voluntary Cleanup Agreement (VCA) signed in November 2002. The VCA applied to the entire Site and included investigation of the Hudson River adjacent to the West Parcel. In June 2004, the Volunteers expressed their interest in transitioning from the Voluntary Cleanup Program (VCP) to the Brownfield Cleanup Program (BCP). During the transition, separate BCAs were developed for the East and West Parcels, signed in May 2005. The separate BCA for the East Parcel is intended to facilitate the donation of approximately 24.5 acres of this land to the Village of Sleepy Hollow. The BCA for the West Parcel encompasses the South Parcel; the Hudson River is the identified offsite area of interest to the West Parcel.

GMC initially purchased properties that comprise the West Parcel in 1914. Prior to that purchase, the parcel had been partially developed with urban fill, consisting largely of coal cinders and various aggregate mixtures to extend the waterfront into a portion of the former Pocantico Bay. Industrial operations prior to GMC's purchase included a brickyard, a percussion rock drill factory, and two facilities where gasoline and steampowered automobiles were manufactured and assembled. GMC demolished most of the early industrial buildings during the 1920s, filled in the remainder of Pocantico Bay with dredge spoils, and constructed an automotive assembly complex that continued to expand and operate for over 70 years. In the East Parcel, purchased by GMC in 1960 for parking, the former Village of North Tarrytown operated a small (<10 acres) municipal refuse and ash landfill during the 1920s and 1930s. The South Parcel, developed on a natural hillside, was previously residential. The North Tarrytown Assembly Plant ceased automobile assembly operations in the summer of 1996 and GMC commenced an organized process of facility decommissioning. The Village of North Tarrytown was renamed Sleepy Hollow in 1997. All references to North Tarrytown in this report and previous documents apply to the Village of Sleepy Hollow.

Between 1996 and 2000, GMC undertook several environmental investigations at the Site to prepare for facility closure. These efforts included Phase I and Phase II Environmental Site Assessments, a Phase III Extent of Contamination Study (EMCON, 1996; 1997; and 2001a), and a Sediment Quality Investigation in the Hudson River (Exponent and EMCON, 1999). In addition, an Interim Corrective Measures Project (EMCON, 2001b) was implemented primarily to remediate fill and soil containing residual petroleum and hydraulic fluids, as well as metals found in crawl spaces

Sediment Remedial Investigation Report

Former General Motors Assembly Plant Site Sleepy Hollow, New York

beneath floor slabs of the former Chassis and Body Assembly Plants, and to remove two underground fuel storage tanks before these buildings were demolished.

Roseland conducted additional sampling of soil and groundwater during 2002 as part of their due diligence investigation (EcolSciences, 2002). The findings of this investigation, and the earlier investigations within the Site conducted by GMC, reflect levels of metals, polycyclic aromatic hydrocarbons (PAHs), and petroleum compounds that are typical of historically filled sites along the Hudson River, especially those dedicated to industrial uses. The GMC and Roseland findings were used to prepare an Investigation Work Plan (IWP), which specified additional on-Site sampling pursuant to the VCA program (AMEC, 2003a). The on-Site RI findings were presented in a Preliminary Draft Remedial Investigation Report (Preliminary Draft RIR), December 2006 (BBL, 2006).

A separate IWP for the off-Site investigation of Hudson River Sediments was outlined in the Supplemental Sediment Investigation Work Plan for Voluntary Cleanup Agreement, Former General Motors Assembly Plant Site, Sleepy Hollow, New York (2004 SSIWP), prepared by AMEC for GMC (AMEC 2004) and implemented in July 2004 pursuant to the VCA for the Site. Data from GMC's preliminary investigation in 1997 was used to focus GMC's 2004 study plan. The data from the 1997 and 2004 investigations were collectively evaluated consistent with the framework presented in the New York State Department of Environmental Conservation (NYSDEC) guidance document Technical Guidance for Screening Contaminated Sediments (NYSDEC, 1999). These evaluations were provided to NYSDEC in an interim Draft Sediment Data Evaluation Technical Memorandum (BBL, 2006a).

Based on GMC's evaluation of the 1997 and 2004 data and discussions with NYSDEC, it was concluded that an additional supplemental investigation under the BCA for the West Parcel was necessary to determine if there is predictive and observed evidence of significant toxicity and benthic community impairment in the near-Site areas relative to background conditions. The scope of work for the latest supplemental sediment investigation was developed through several scoping sessions with NYSDEC. and is described in the Supplemental Sediment Investigation Work Plan for Brownfield Cleanup Agreement-West Parcel Former General Motors Assembly Plant Site, Sleepy Hollow, New York (2006 SSIWP) prepared by Blasland, Bouck and Lee, Inc.(BBL) for GMC (BBL 2006b). The field sampling outlined in the 2006 SSIWP was performed during September-October 2006.

Sediment Remedial Investigation Report

Former General Motors Assembly Plant Site Sleepy Hollow, New York

The collective objectives, methods and findings of all three investigations conducted by GMC are summarized in this Sediment RIR in the following sections:

- Section 1 Introduction. This section describes the overall remedial investigation program for the Site and role of GMC's sediment investigations in that process.
- Section 2 Site Description and History. This section describes general Site setting and history of land use, with emphasis on historic wastewater discharges, which are the focus of the sediment investigations.
- Section 3 Objectives, Scope and Rationale. This section describes the primary objectives of the sediment investigations through 2006 and a brief summary of the scope and rationale for the concluding biological impact evaluations.
- Section 4 Historic Hudson River Investigations. This section summarizes the pre-Remedial Investigation (pre-RI) sampling and analysis conducted by GMC, as well as a regional study conducted by NYSDEC, upstream of the Site, in 2000/2001.
- Section 5 Phase I (2004) Sediment Investigation. This section describes the scope of first phase of sediment investigations conducted under the VCA for the Site.
- Section 6 Evaluation of Phase I Data. This section summarizes the preliminary evaluation of the 2004 sediment investigation as well as the pre-RI data from GMC and NYSDEC surveys.
- Section 7 Phase II (2006) Sediment Investigations. This section describes the scope of the second phase of sediment investigations conducted under the BCA for the Site (West Parcel).
- Section 8 Evaluation of Phase II Sediment Data. This section presents the findings of the 2006 investigations of the biologically active surface zone and associated toxicity testing and benthic impact assessment.
- Section 9 Evaluation of Phase II Subsurface Sediment Data. This section presents the findings associated with various subsurface core samples

Sediment Remedial Investigation Report

Former General Motors Assembly Plant Site Sleepy Hollow, New York

beneath the biologically active surface layer to assess conditions associated with historic sediment deposition.

- Section 10 Qualitative Human Health Exposure Assessment. This section identifies and characterizes the potential pathways for human exposure to sediments in the Site vicinity.
- Section 11 Fish and Wildlife Resource Impact Assessment. This section assesses the type and extent of fish and wildlife resources, and characterizes potential impacts of site-derived contaminants to those resources.
- Section 12 Conclusions and Recommendations. This section presents the conclusions and recommendations regarding Hudson River sediments in the vicinity of the Site.
- Section 13 References. This section lists the references cited in this report

Sediment Remedial Investigation Report

Former General Motors Assembly Plant Site Sleepy Hollow, New York

2. Site Description and History

2.1 Site Description and Land Use

At the time of facility closure in 1996, the main assembly plant property (West Parcel) contained two manufacturing buildings (the Body Plant and the Chassis Plant) and support operations consisting of a powerhouse, petroleum bulk storage tanks, a wastewater pretreatment facility, a water storage tank, and miscellaneous day shelters for equipment and personnel. These structures were decommissioned and demolished by 1999, leaving concrete building slabs and asphalt surfaces covering most of the Site (Figure 1B). A stockpile of recycled concrete aggregate from the demolition, some of which was spread on the West Parcel, is situated near the waterfront, landward of the former wastewater treatment plant berm and wall. The West Parcel is separated from the East Parcel by an active railroad corridor owned by Conrail serving Metro-North, AMTRAK, and freight services. The East Parcel was developed by GMC as a Parking lot, which remains covered with asphalt. The former salaried employee parking lot is located across Beekman Avenue, directly south of the West Parcel. This paved lot is bordered by Beekman Avenue, Hudson Street, River Street, and property owned by the Village of Sleepy Hollow.

The West Parcel includes approximately 1,000 ft of rip-rapped shoreline on the Hudson River. The overall topography of the West Parcel is relatively flat, with significant portions occupied by the remaining building floor slabs of the former Chassis and Body Plants (Figure 1C). Ground surface elevations over much of the West Parcel are within 5 to 20 feet (ft) above mean sea level (MSL), with building slabs at an approximate elevation of 13 ft. The surrounding area rises steeply to the east, away from the Hudson River. The Salaried Parking Lot on the southeast side of the facility is located on this rise, overlooking the plant from an elevation sloping from approximately 20 to 50 ft. Most of the East Parcel is relatively flat, with paved surface elevations between 3 to 11 feet above MSL, bounded on the south and east perimeter by steep slopes. Under an agreement with GMC, the Village of Sleepy Hollow is currently using the East Parcel to temporarily stage materials for municipal public works projects.

Groundwater in the Site vicinity is not used as a potable water supply. A reservoir fed municipal water-supply system services the Sleepy Hollow area, including the Site. Reservoirs for this system (and other community water supplies) are located more than 3 miles upgradient of the Site. The Catskill Aqueduct serves as the main source of water for the Village of Sleepy Hollow. Water is stored in the Village's reservoir in the Rockefeller State Park Preserve. It is unlikely that groundwater beneath the Site would

Sediment Remedial Investigation Report

Former General Motors Assembly Plant Site Sleepy Hollow, New York

ever be used as a potable water supply because the area is serviced by the local municipal system and the natural water bearing units below the fill are expected to have relatively low yields. Although the fill may represent a zone of significant groundwater yield, such artificially created deposits are typically unsuitable and undesirable as potable supplies.

Current land uses within the immediate site vicinity include a mix of industrial, commercial, residential, and parkland. Most of the industrial property in the surrounding area is located along the Hudson River waterfront, south of the Site. These industrial uses have recently (2004-2005) included shipping and receiving of automobiles and other freight, as well as commercial oil distribution and asphalt manufacturing. Both the oil distribution and asphalt manufacturing operation were served by commercial tanker or barge service via the Hudson River Federal Navigation channel to enter and exit the Tarrytown Harbor. There are also two marinas at the southern end of the Harbor. Historic waterfront uses near the Site have included a coal and lumber receiving facility adjacent to the Site and a manufactured gas plant (which has recently been remediated) in the vicinity of the former asphalt plant. By 2006, the automobile transfer yard adjacent to the Site was redeveloped as Ichabod's Landing, a residential waterfront development, and the former asphalt plant site in the Village of Tarrytown is under site construction for another residential waterfront development. Several nonindustrial commercial facilities, as well as the Village of Sleepy Hollow Public Works Facility and the Village of Tarrytown Public Works Garage, are currently present within the industrially zoned area south of the Site near the Hudson River waterfront. The commercial center for the Village of Sleepy Hollow is less than 0.5 miles east of the Site. Lands immediately southeast and east of the Site are primarily residential. Public parklands surround the northern borders of the Site. Kingsland Point Park of Westchester County abuts the northwest border of the Site. The Tarrytown Lighthouse, which is listed on the National Register of Historic Places, is located immediately west of the Site (in the Hudson River) and is accessible to the public through Kingsland Point Park. DeVries Park of Sleepy Hollow abuts the northern border of the Site. Philipsburg Manor, a restored early 18th century farm with public access, adjoins DeVries Park and the northeast corner of the Site. Active freight and passenger rail services run through the Site within a common corridor.

2.2 Site Waterfront History

Two of the three outfalls located on the current Site waterfront have historically discharged wastewater from automobile assembly and painting processes into the Hudson River. The oldest discharge is Outfall 3 (OF-3), which discharged wastewater

Sediment Remedial Investigation Report

Former General Motors Assembly Plant Site Sleepy Hollow, New York

from the northern section of the former Body Plant to the Hudson River from 1914 (at the earliest) until 1962. Prior to 1914, the facility was used by another automotive manufacturer to produce steam-powered automobiles. This outfall (OF-3) was sealed and replaced with a 48-inch storm drain [Outfall 1 (OF-1)] in 1963, and the Body and Chassis Plant wastewater flows were combined to discharge through this drain. The location of the OF-3 outlet is only approximate because the shoreline was modified in 1960. OF-1 discharges from the shoreline at the southern end of the Site, close to the Federal Navigation Channel in the northern area of the Tarrytown Harbor. Outfall 2 (OF-2) is a storm water outfall, constructed in the early 1960s during the expansion of the waterfront to its current configuration. This storm drain currently services the West Parcel in the vicinity of the former Body Plant, and discharges offshore, approximately mid-way between OF-1 and OF-3. Process wastewater was never discharged from OF-2.

Processes that contributed to the historical wastewater flow included metal washing and other processes that utilized chromium, zinc, and nickel compounds, caustic solutions, automotive paints and paint thinners. In order to eliminate the discharge of industrial wastewater to the Hudson River, GMC constructed a wastewater treatment plant at the Site during 1970-1971. Following completion of the wastewater treatment plant in October 1971, GMC's industrial wastewater connection to the Hudson River outfall (OF-1) was completely sealed and severed, and all treated wastewater was discharged to the Village's sewer system. The Village's treatment system operated until the early 1980s when all sanitary and wastewater flow was diverted to the Westchester County sewer system.

In addition to Site stormwater discharge, the Tarrytown Harbor currently receives stormwater discharges from the Villages of Tarrytown and Sleepy Hollow. Over 20 wastewater discharge permit holders exist in the general vicinity, including several municipal wastewater treatment plants and two electrical generating stations within 20 miles upstream of the harbor. The Village of Sleepy Hollow historically discharged municipal wastewater, following primary treatment, to the harbor within 800 feet south of the Site. A former battery manufacturing site upland of the Site, and within in the same stormwater drainage basin, underwent soil remediation during the 1980's to remove mercury-contaminated soils from the facility and neighboring properties. An historic manufactured gas plant (MGP) site at the former asphalt plant site on the Tarrytown waterfront recently underwent remediation, including dredging of Hudson River sediments from the harbor navigation channel in 2004 to remove coal tar that had seeped into the river bottom downstream of the Site.

Sediment Remedial Investigation Report

Former General Motors Assembly Plant Site Sleepy Hollow, New York

3. Objectives, Scope and Rationale

3.1 Objectives

A significant number of sediment samples have been collected from the Hudson River by GMC and others over the past several years to characterize the general extent of contamination that may be related to current and historic waterfront activities and discharges to the River. Recognizing that sediment quality near the site reflects decades of urban, agricultural and industrial land use resulting in discharges of many naturally occurring and anthropogenic chemical constituents from points up and down the River, a regional data search and three field investigations have been conducted by GMC between 1997 and 2006 to determine the nature and extent of possible Siterelated impacts.

The primary objectives of the sediment evaluations in 1997 and 2004 were to 1) identify chemicals of potential concern (COPC) in Hudson River sediment that may be attributable to the Site; and 2) identify areas of the Hudson River where site-related COPC concentrations in sediments are most prevalent. These data were collectively evaluated during 2004-2006 to determine the extent to which additional data collection activities may be warranted to further assess the potential toxicity of the sediments in the more prevalent Site-related COPC areas.

The 2006 SSIWP outlined a series of supplemental studies, developed with significant input from NYSDEC, which build upon the existing information on sediment quality and provide additional chemical and biological data needed to evaluate the degree of environmental impairment, if any, evident in near-Site sediments relative to background. The objectives of these supplemental studies were as follows:

- 1. Predict Site-specific metal toxicity to benthic organisms using the equilibrium partitioning sediment benchmark (ESB) approach, based on sediment and pore water chemistry as specified in USEPA (2005a) guidance.
- 2. Determine whether benthic communities in near-Site areas of interest are significantly impaired relative to representative background locations, based on a benthic invertebrate survey and calculation of biological metrics.
- 3. Determine if sediments in near-Site areas of interest may be more toxic to representative benthic organisms than sediments from background locations, based on the findings of whole sediment bioassays.

Sediment Remedial Investigation Report

Former General Motors Assembly Plant Site Sleepy Hollow, New York

- 4. Determine if select metals (chromium, copper, lead, mercury and zinc) in near-Site and background sediments have bioaccumulated in a representative benthic organism, based on whole body tissue analysis.
- 5. Provide a general depositional profile of the near-Site area of interest and representative background areas through sediment aging techniques (geochronology).
- 6. Provide a representative vertical profile of select metal concentrations in the near-Site area of interest, including the immediate vicinity of OF-1, and background areas.
- Characterize the physical and geotechnical properties of sediments in the vicinity of OF-1 to support design of an interim remedial measure (IRM) under consideration for this area.

3.2 Scope and Rationale

In order to meet these objectives, the 2006 supplemental sediment investigation integrated bulk sediment chemistry and grain size analyses with sediment toxicity benchmark and bioaccumulation parameters, whole sediment toxicity testing, and benthic community assessment throughout the background and near-Site study areas. The scope of work included analyses of the following:

- Surface and subsurface sediment samples for COPC concentrations (chromium, copper, lead, mercury, and zinc), total organic carbon (TOC), simultaneously extracted metals (SEM), and acid volatile sulfides (AVS);
- Sediment pore water extraction and analyses of COPCs, soluble organic carbon, hardness and pH;
- Benthic macroinvertebrate community surveys;
- 28-day whole sediment toxicity tests (bioassays);
- Bivalve tissue sampling and analysis for COPCs;
- Radionuclide analysis for geochronology (deposition profiles); and

Sediment Remedial Investigation Report

Former General Motors Assembly Plant Site Sleepy Hollow, New York

• Physical characterization, including grain size and selective geotechnical properties.

Sediment Remedial Investigation Report

Former General Motors Assembly Plant Site Sleepy Hollow, New York

4. Historic Hudson River Sediment Investigations

Several historical sediment investigations have been conducted for the lower Hudson River in the vicinity of the Site. These investigations include a study conducted in 1997 specific to the Site, and non-site specific studies conducted in 2000/2001. This section summarizes the scope and activities of these earlier sediment investigations. Later studies in 2004 (Phase I Study) and 2006 (Phase II Study), components of the Remedial Investigation of the Site under the VCA and BCA described in Section 1.1, are described in subsequent sections of this report.

For data evaluation purposes, the sample locations from the various sediment investigations are divided into two primary groups: background (upstream or reference locations) and near-Site. Sediment samples collected within a closely-spaced grid at OF-1 are also identified separately. Background and near-Site sediment sample locations of historical sediment investigations are depicted on Figures 2 and 3.

4.1 1997 Sediment Investigation (Exponent)

In 1997, Exponent and EMCON (Exponent) designed and conducted a sediment investigation for GMC to determine representative baseline sediment quality conditions in the Hudson River following the GMC Assembly Plant closure. Exponent collected surface (0 to 2 inch) sediment samples from 106 locations of the lower Hudson River, including areas upstream, adjacent to, and downstream of the Site (Exponent and EMCON, 1999). The objective of the sampling was to identify and characterize potential constituents of concern that could have been associated with historical GMC wastewater discharges from the Site.

4.1.1 Sample Locations

Sixteen of the sediment samples were collected from four transects (Transects 14 to 17) located approximately 1 to 3 miles upstream of the Site. These four transects are outside of the potential zone of Site influence, and are useful for establishing background sediment quality. Eighty-six of the sample locations were considered near-Site locations, and the remaining four downstream locations were not considered Site-related due to their relative distance downstream. The sample locations from the Exponent study are depicted on Figures 2 and 3 and designated with a combination of the letter "T" and numbers (e.g., T14D).

Sediment Remedial Investigation Report

Former General Motors Assembly Plant Site Sleepy Hollow, New York

4.1.2 Sample Methods

The sediment samples were collected using push-core sampling equipment, following the procedures described in the Data Report for the Sediment Quality Investigation (Exponent and EMCON 1999).

4.1.3 Analyses

Sediment samples were analyzed for 14 select inorganic metals that were expected constituents in historical wastewater discharge. The constituents were antimony, arsenic, barium, cadmium, chromium, copper, lead, manganese, mercury, molybdenum, nickel, tin, titanium, and zinc. Analyses were conducted by Columbia Analytical Services (CAS), Rochester, New York.

4.1.4 Results

Results of the 1997 investigation are presented in Data Report for the Sediment Quality Investigation, Hudson River (Exponent and EMCON 1999), which has previously been provided to NYSDEC. Data from that investigation, for metals carried through the 2004 investigation, are included in Section 6.

4.2 2000/2001 Regional Sediment Investigation (Versar)

In 2000 and 2001, Versar, Inc. (Versar) collected surficial (0 to 1 inch) sediment samples from the lower Hudson River (from the Battery up to Troy, New York) as part of the Hudson River Estuary Biocriteria Project for NYSDEC (Versar, 2003). The goal of the Hudson River Estuary Biocriteria Project was to develop one or more biological indicators that could be used to assess the ecological condition of the estuary (Versar, 2003). A more detailed description of the study (including the results) is presented in the Hudson River Estuary Biocriteria Final Report (Versar, 2003).

4.2.1 Sample Locations

As part of the 2000/2001 studies samples were not taken in the immediate vicinity of the Site. However, samples bracketed the Site starting from approximately 1 mile upstream and approximately 2 miles downstream. For this reason, 39 sediment samples collected by Versar approximately 1 to 5 miles upstream of the Site were considered to be representative of background conditions for the Site. Sample

Sediment Remedial Investigation Report

Former General Motors Assembly Plant Site Sleepy Hollow, New York

locations from the Versar study are depicted on Figure 2 and designated with a 3- or 4digit numeric identification (e.g., 608 or 1074).

4.2.2 Sample Methods

The sediment samples from the Versar study were collected using a Young grab sampler, and three samples were collected from each station.

4.2.3 Analyses

The 2000/2001 Versar sediment samples were analyzed for Aroclor PCBs, PAHs, chlorinated pesticides, and select metals (aluminum, arsenic, cadmium, chromium, copper, lead, mercury, nickel, silver, and zinc).

4.2.4 Results

Analytical data from the Versar sampling efforts, for constituents included in GMC's 2004 investigation, are included in Section 6. In addition to sediment chemistry, Versar (2003) also studied benthic biota biological communities, and habitat characteristics throughout sections of the Hudson River estuary from the Battery (southern tip of Manhattan) to the Troy Dam, including the general vicinity of the Site. The study classified benthic habitats as degraded, indeterminate, and non-degraded, based on evaluation of ERM quotients for sediment chemistry data, as well as benthic invertebrate and fish community indices and proximity to urban areas. The general vicinity of the river near the Site (within approximately twenty miles upstream and downstream of the Site and east of the main channel) was generally classified as "degraded". Versar found that the most pervasive chemical contaminants found throughout the Hudson River are metals. Both metal and PAH contamination occurred throughout the river, but PAHs were most prevalent at sites in Yonkers, Newburgh Bay, Poughkeepsie, and Kingston. Although samples were not collected by Versar within the Tarrytown Harbor (where the Site is located), similar urban waterfront conditions occur at the Site given the historic waterfront development, as well as commercial land and harbor use along the Sleepy Hollow and Tarrytown waterfront.

Sediment Remedial Investigation Report

Former General Motors Assembly Plant Site Sleepy Hollow, New York

5. Phase I (2004) Sediment Investigation

In 2004 a sediment investigation was conducted by AMEC Earth & Environmental, Inc. (AMEC) for GMC to evaluate potential historical discharge from the Site. The sampling was conducted in accordance with a NYSDEC-approved SSIWP (AMEC, 2004).

5.1 Sample Locations

In 2004 AMEC collected sediment samples from 45 locations, including 39 near-Site stations and 6 background stations. The sediment samples included surficial (0 to 2 inch) samples and subsurface (2 to 6 inch and 6 to 12 inch) samples.

The near-Site stations were located in the vicinity of the three existing outfalls; however, the allocation was subjective because the area that might be influenced by individual outfalls was unknown. The stations were numbered consecutively in a downstream to upstream sequence (SED01 through SED39). Nineteen sampling stations (SED01 through SED19) were located in the vicinity of OF-1. Station SED10 was located immediately in front of OF-1, within ten feet of the visible concrete opening. The remaining 18 stations were arranged in four transects, extending from approximately 50 feet offshore to approximately 800 to 1,100 feet offshore.

Eleven sampling stations (SED20 through SED30) were located in the vicinity of OF-2. The 11 stations were arranged in 3 transects extending from approximately 50 feet offshore to approximately 550 to 1,000 feet offshore. Stations SED23 through SED26 form a transect originating at OF-2. SED26 was located in the general vicinity of the submerged outfall, approximately 50 feet from the shoreline. Stations SED27 through SED30 are located along Transect 8 (from GMC's 1997 sampling), which was oriented in line with a previously incorrect location for OF-2. The correct location of OF-2 was recently verified and is shown on Figure 3.

Nine stations (SED31 through SED39) were located in the vicinity of OF-3. Station SED37 was located in the immediate vicinity of the submerged OF-3, within 50 feet of the shoreline. The remaining stations were oriented to fit the cove configuration in that area, extending up to 300 feet upstream and approximately 900 feet downstream of the shoreline at OF-3.

Background samples were collected approximately 3 to 5 miles upstream near Ossining, New York, at 6 locations previously sampled by either Versar or Exponent.

Sediment Remedial Investigation Report

Former General Motors Assembly Plant Site Sleepy Hollow, New York

Background samples were collected from the same three depth intervals as the near-Site samples, for a total of 18 samples.

Sample locations of the 2004 study are depicted on Figures 2 and 3 and designated as SED## (e.g., SED10).

5.2 Sampling Methods

The 2004 sediment samples were collected with a core sampler. At each of the 45 sampling stations, the core was segmented into three intervals: interval A (0 to 2 inch), interval B (2 to 6 inch), and interval C (6 to 12 inch)). The samples from each interval were identified separately (e.g., SED01A, SED01B, and SED01C).

At 15 of the near-Site locations (shown as proposed 12-inch cores on Figure 2 of the 2004 SSIWP) each of the three sample intervals were submitted to the laboratory for analysis. At the remaining 24 near-Site stations (designated as contingency cores on Figure 2 of the 2004 SSIWP) only intervals A and B were initially analyzed. The interval C of these stations was extracted and frozen pending the results of the intervals A and B analyses. The decision to analyze the interval C samples was made based on the results of the analysis of the upper two intervals after consultation with NYSDEC.

New pre-cleaned core liners made of clear Lexan® were used to retrieve each sediment sample. The cores were kept in an upright position onboard the sampling vessel and were transferred to the onshore field laboratory for processing. At the field laboratory, the sediment cores were segmented into three intervals and qualitative observations regarding the presence of anthropogenic materials, shells, and macrobenthos were recorded.

General water quality was measured at each sample location with a portable electronic water quality monitor (e.g., Horiba Water Quality Meter). Measurements included temperature, dissolved oxygen, pH, conductivity, and salinity. Qualitative observations of water conditions (turbidity, presence of floating objects and debris) were also made.

Copies of the 2004 field sampling logs are provided in Appendix A.

5.3 Analyses

Samples were analyzed for specific metals representative of GMC's historical wastewater discharge. NYSDEC agreed that the metals to retain from the 1997

Sediment Remedial Investigation Report

Former General Motors Assembly Plant Site Sleepy Hollow, New York

investigation for analysis in the 2004 investigation were antimony, arsenic, barium, cadmium, chromium, copper, lead, manganese, mercury, nickel, and zinc.

Samples were also analyzed for Arochlor PCBs, PAHs, and TOC. PAHs and PCBs were identified as target analytes by NYSDEC. However, PAHs and PCBs are not considered COPCs for the near-Site Hudson River. Trace levels of PCBs (typically around 1 ppm) were detected in recycled concrete aggregates which were produced during demolition of onsite buildings in 1998/1999. This milled concrete has been stockpiled for future recycling as structural subsurface fill at the Site. Similarly, PAHs were detected in historical fill that was used on site. The fill dates back to the 1800s, and is found in limited areas and believed to be naturally attenuating.

Sediment was also collected at each station for grain size characterization. A matrix summarizing the type of samples collected at each station is provided in Table 1. Analyses were performed by CAS, Rochester, New York.

5.4 Quality Assurance/Quality Control

Quality assurance/quality control (QA/QC) procedures were implemented during the 2004 study and were carried out in accordance with the SSIWP (BBL, 2004). QA/QC activities are described below.

5.4.1 Field QA/QC

Field sampling activities were performed following standard operating procedures as described in the SSIWP (BBL, 2004). The field instruments used for measuring field water quality parameters such as salinity, temperature, conductivity, dissolved oxygen, and pH were calibrated in accordance with the manufacturers' specifications and checked on a daily basis. Field QA/QC samples were collected and described as follows:

• Field duplicates were used to assess consistency of sampling methods, sample homogeneity, and precision of laboratory analytical procedures. Field duplicates for sediment or pore water were collected at a frequency of 10% of the total number of samples collected per matrix. Duplicate samples were submitted for laboratory analyses for the same chemical parameters as the parent samples.

Sediment Remedial Investigation Report

Former General Motors Assembly Plant Site Sleepy Hollow, New York

- Equipment (rinsate) blanks were collected only in cases where non-dedicated sampling devices were used for sample acquisition. Equipment blanks were prepared by pouring analyte-free water over decontaminated sampling equipment to verify that the decontamination procedure had been adequately carried out and that there was no cross-contamination of samples occurring due to the equipment itself. Equipment blanks were collected at a frequency of 5% of the total number of samples collected with non-dedicated sampling device and submitted for laboratory analyses for the same analytical (chemical) parameters as that of those samples collected using the equipment.
- Matrix Spike/Matrix Spike Duplicate (MS/MSD) samples were used to assess the accuracy and precision of laboratory methods. MS/MSD samples were prepared by spiking the samples with known quantities of target analytes at the laboratory prior to undergoing the analysis. MS/MSD samples were prepared at a frequency of 5% of the total number of samples collected per matrix.

Field duplicate results are presented with the primary sample results in the data tables (Section 6). Results of equipment blanks and MS/MSD are presented within the laboratory reports submitted to the NYSDEC separately.

5.4.2 Laboratory QA/QC

Sample analyses and method QA/QC procedures were performed by the laboratories in accordance with the requirements of appropriate analytical methods described in the SSIWP (BBL, 2004).

5.4.3 Laboratory Data QA/AC

Laboratory analytical data for the Phase I data set were evaluated and validated by AMEC. The results of the chemistry data validation are documented in the Data Usability Summary Reports (DUSRs) prepared for each sample delivery group in accordance with the Guidance for Development of Data Usability Summary Reports (NYSDEC, 2002). The primary objective of the DUSR is to determine whether or not the data, as presented, meet the project-specific criteria for data quality and data use. The DUSRs confirm that the data-quality objectives outlined in the 2004SSIWP were met, and provide the final validated laboratory data tables for all samples. All analytical data included in the RI Report reflect the validated data including any adjustments, if

Sediment Remedial Investigation Report

Former General Motors Assembly Plant Site Sleepy Hollow, New York

applicable, based on the DUSRs. The DUSRs produced associated with this sediment investigation have been provided to the NYSDEC under separate cover.

5.5 Results

Results of the 2004 sampling were provided to NYSDEC in an interim technical memorandum and are presented and discussed in Section 6.

Sediment Remedial Investigation Report

Former General Motors Assembly Plant Site Sleepy Hollow, New York

6. Evaluation of the Phase I Data

Prior to conducting the subsequent (Phase II) studies, a screening-level evaluation of the Phase I data was conducted. The Phase I data evaluation included the results from the 2004 data, as well as data from the historical (1997, 2000/2001) studies, as appropriate. The Phase I data evaluation included comparison of sediment data with screening criteria and comparison of near-Site data with data from background or reference areas.

The Phase I data evaluation approach was consistent with the framework presented in the NYSDEC guidance document entitled Technical Guidance for Screening Contaminated Sediments (NYDEC, 1999). It relied on an initial comparison of sediment data with generic, conservative chemical-specific screening criteria. Also, because the Hudson River has been affected by anthropogenic activities, the near-Site data were further compared with those of background or reference areas. Specifically, this screening-level evaluation included the following steps:

- Step 1 Relevant sediment data that are representative of Site-related sediment and background conditions were identified.
- Step 2 The background data were evaluated for outliers per NYSDEC's request. The analyses resulted in a conservative background data set that excluded "high outliers" (censored background).
- Step 3 The near-Site data were compared to background data using statistical methods.
- Step 4 The near-Site and background data were screened using freshwater lowest effect levels (LELs) and severe effect levels (SELs).
- Step 5 Sediment ranking was conducted for each sampling location.

6.1 Relevant Sediment Data

Relevant sediment data (Tables 3 and 4) from the combined dataset from 1997 to 2004 were used in the Phase I data evaluation. Although there are different sampling depths within this data set, all of the sediment data from the near-Site and upstream background area (as far upstream as Ossining, New York) are included in this evaluation. Exponent (in 1997) sampled the upper 2 inches as a representative interval

Sediment Remedial Investigation Report

Former General Motors Assembly Plant Site Sleepy Hollow, New York

for the aerobic, biologically active zone for most benthos and bottom-feeding fish, and to assess current (rather than historic) conditions. The Versar (2000-2001) sampling included the upper 1 inch. AMEC (in 2004) included the 2-inch interval for comparison with the Exponent data, plus two deeper intervals (2 to 6 inches and 6 to 12 inches).

Exponent (1997) study data are presented on Figures 6 through 9 in four segments. AMEC (2004) study data are presented on Figures 10 through 12 in three segments.

A statistical comparison of surface and subsurface sediment data from the AMEC investigation was conducted using a nonparametric analysis of variance. The Kruskal-Wallis (p-value) test statistic was used to analyze statistical differences amongst the population arithmetic means. P-values less than 0.05 were considered statistically different. This analysis did not indicate any significant differences between surface and subsurface samples (to 12 inches) for most of the constituents within the study area. The exceptions were antimony, arsenic, and cadmium, where the subsurface intervals exhibited significantly higher average concentrations than the surface interval.

There are also some differences in the data set regarding sediment type. Review of unpublished data from the NYSDEC Benthic Mapping Project (as well as sediment classification data from the Exponent, Versar and AMEC investigations) indicates that the study area (including background areas) is predominantly mud (soft silt and clay), sand, or a combination of the two. Since many chemical constituents have an affinity for organic carbon and organic matter represents a food source for benthic organisms, sediment type can have an influence on both constituent concentrations and habitat quality. For this assessment, the effects of sediment type were not considered.

6.2 Outlier Analysis

Previous discussions with NYSDEC regarding the Tarrytown sediment data resulted in the NYSDEC's recommendation to review the background data to identify and remove potential outliers that may be biased high from the background data set. The following analysis was prepared in response to that recommendation, with the recognition that removal of outliers from the background data is very conservative because it removes area-specific background data that are reflective of non-site related upstream conditions, biasing the background data in favor of lower concentrations. Rather than removing data based on subjective opinion, the background data were systematically screened for the presence of potential statistical outliers. Statistical outliers are identified through some measure of extreme distance of anomalously high points from the central tendency and underlying distribution of a data set. The background data set

Sediment Remedial Investigation Report

Former General Motors Assembly Plant Site Sleepy Hollow, New York

was screened for high outliers (for PCBs, total PAHs, and individual metals) using the Outlier Identification option in the Statgraphics software package (Statgraphics®Plus, Version 5, 2000). The z-statistic based on the median absolute deviation (MAD) was used because it was the most sensitive to anomalous values, and therefore most likely to identify outliers. The MAD method measures the distance of a given point from a sample mean when the mean and standard deviation are based on the median absolute deviation of sample statistics with each individual point eliminated one at a time. Because it uses parametric statistics, this method requires normality in the data, and therefore some constituent data were log-transformed prior to analysis to satisfy that requirement. In instances where the data could not be statistically fit to either a normal or log-normal distribution, the closest fit was selected. If a sample was identified as an outlier for a particular constituent, the data for the particular constituent were removed from the dataset.

The results of the outlier analysis are provided in Table 4. For each constituent, the underlying distribution is provided if it was normally or log-normally distributed, along with the assumed distribution used in the outlier analysis. The resulting samples identified as outliers are also provided by constituent. Total PAHs and total PCBs were not included in the outlier analysis because not all samples were analyzed for these constituents. The result of the background outlier analysis identifies two samples for arsenic and barium, and one sample for manganese as outliers (Table 4). In total, four background sediment locations have metal-specific outliers that were removed from the data set (samples Versar 506, Versar 1087, T17A, and SED43).

6.3 Comparison to Background Concentrations

Sediment quality within the lower Hudson River has been affected by anthropogenic loadings of organic and inorganic constituents in storm water runoff and various urban and industrial wastewater discharges. For this reason, it is important to identify possible Site-related COPC levels relative to background conditions. The next step of the sediment screening process compares sediment COPC concentrations for near-Site and background sample populations using analysis of variance and comparison of arithmetic means (i.e., ANOVA, t-tests) to determine if a significant difference existed between sample populations. The sediment evaluation included both surface (0 to 2 inch) and subsurface (2 to 6 inch; 6 to 12 inch) sediment. As discussed in Step 2, background outliers (for metals) were conservatively removed from the comparative analysis.

Sediment Remedial Investigation Report

Former General Motors Assembly Plant Site Sleepy Hollow, New York

Initially, the data from each sample population (i.e., near-Site and background) were plotted to determine data distributions and tested for normality using Lilliefor's and Shapiro-Wilk Quantile-Quantile (Q-Q) plots and histograms. Prior to evaluation of variance and arithmetic mean comparisons, log-normal data sets were transformed. Arithmetic means were compared using the Bonferroni and Least Significant Difference (LSD) t-test methodologies (alpha = 0.05). Non-parametric distributions were analyzed using Kruskal-Wallis one-way ANOVA test procedure (alpha = 0.05).

The t-tests compare the entire near-Site sediment data set to background concentrations (minus the outliers). A summary of the t-test comparison is presented below:

Constituent	Arithmetic Mean C	Near-Site	
Constituent	Near-Site ¹	Background ²	Significantly Higher?
Antimony	2.84	ND (3.22)	
Arsenic	9.63	8.25	
Barium	211	46.9	X
Cadmium	1.40	0.77	Х
Chromium	56.9	40.7	X
Copper	64.7	39.6	X
Lead	95.6	41.9	X
Manganese	716	731	
Mercury	0.925	0.396	X
Nickel	27.9	25.5	Х
Zinc	185	121	X
Total PCB	0.673	0.125	X
Total PAH	4.64	0.421	Х

Notes:

1. Includes all near-Site sediment data.

2. Excludes background outliers.

ND = Not detected in any of the background samples.

X = Concentrations in near-Site sediment samples are significantly higher than background (alpha = 0.05).

The t-tests for comparison of arithmetic means for all near-Site data and background data (excluding the outliers) indicates that near-Site data are not significantly elevated for arsenic and manganese. Therefore, these metals are excluded as possible COPC for near-Site sediment. Similarly, the t-tests indicate that near-Site data for antimony is not significantly higher than background. However, the near-Site and background data

Sediment Remedial Investigation Report

Former General Motors Assembly Plant Site Sleepy Hollow, New York

sets are largely quantified using the detection limits, because antimony was non-detect in all of the background samples and detected infrequently (approximately 6%) in the near-Site samples. Reporting limits for antimony vary by study, and are generally higher for the background (Versar) and 1997 Exponent data. Given the relatively low frequency of detection near the Site, and the higher detection limits of the background data from Versar, antimony is excluded as a possible COPC.

PCBs in the Site vicinity were identified as significantly greater than background (maximum near-Site = 4.81 mg/kg; maximum background = 2.5). However, the potential for PCBs to have been discharged from the Site to the Hudson River is relatively low. PCBs have not been detected in historic Site fill, including the sediments that had been dredged from the Hudson and used to extend the shoreline to its current location. Site-wide groundwater sampling has not revealed the presence of PCBs. A limited number of minor spills associated with PCB containing fluids in electrical equipment and a few hydraulic systems occurred inside the former assembly plant buildings, but all residual contamination of building surfaces was removed or cleaned up prior to facility demolition. As such, these interior spills had no means to reach the Hudson River. Trace levels of PCBs (typically around 1 mg/kg) have been detected in recycled concrete aggregate produced during demolition of the former on-site buildings in 1998-1999. This aggregate was stockpiled and spread on a portion of the Site following facility demolition. The stockpile is situated within a bermed area, which prevents direct flow of stormwater runoff from the stockpile to the Hudson River. If stormwater discharge associated with the millings was a source of PCBs near the Site, it would be a relatively recent occurrence because the stockpile did not exist before 1998. The observed vertical distribution of PCBs in sediments, however, suggests that the deposition of trace PCBs in this area was not uniquely recent (since 1998), owing to the sustained vertical distribution of PCBs to 12 inches below the river bottom. The Tarrytown Harbor navigational channel, which is routinely subject to physical sediment disturbance from vessel traffic and maintenance dredging, may exert an influence on the areal extent and vertical distribution of all constituents near the Site, including PCBs. Regardless, because concentrations are elevated relative to background, PCBs are included in this evaluation.

PAHs are identified as significantly greater than background (maximum near-Site = 16.2 mg/kg; maximum background = 3.83 mg/kg). Storm water (including storm water from the Site) is expected to convey PAHs that are typically found in parking lot, roadway, and roof runoff. While it is understood that PAHs were not significant components of the process waste streams, they are expected to be ubiquitous in asphalt runoff from the entire urban watershed of Sleepy Hollow and Tarrytown. While

Sediment Remedial Investigation Report

Former General Motors Assembly Plant Site Sleepy Hollow, New York

PAHs have been found in historical fill used to develop the Site prior to the 1960s, they have typically been found in many waterfront fill areas along the lower Hudson River. The proposed Ferry Landings Site in Tarrytown (near Exponent transect T04), also adjacent to the Tarrytown Navigational Channel, is the Site of a recent coal tar remediation project at an historic manufactured gas plant (MGP) site.. The project included the dredging of PAH-contaminated coal tars and sediments from the shoreline out into the harbor channel, soon after the AMEC sampling was completed in the summer of 2004. Other possible localized sources may include a heating oil storage facility and the former asphalt manufacturing facility (location of the historic MGP site) Both facilities have been regularly serviced by tankers or barges, indicating the possibility of historical spills in the harbor area. Stations SED1 and SED2 are closest to these facilities. Regardless, because concentrations are elevated relative to background, PAHs are included in this evaluation.

6.4 Comparison to NYSDEC Sediment Criteria

Sediment criteria from the NYSDEC (1999) Technical Guidance for Screening Contaminated Sediments were used to screen the near-Site data and the background data, including previously identified outlier samples, (Tables 2 and 3). Inorganic constituent concentrations were compared to the NYSDEC (1999) freshwater LELs and SELs. Total PCB and PAH concentrations were compared to the LELs and SELs provided in Persaud et al. (1993). This comparison was performed per NYSDEC (2005) direction to use freshwater sediment criteria values for this initial screening, which were subsequently used as the basis of the station ranking. Water quality data measured during 2004 sediment investigation, presented in Table 5 confirm that the study area is within the brackish water transition zone between freshwater and marine conditions. Data derived from the 2006 investigation are compared to saltwater sediment criteria in assessing bulk sediment chemistry.

It should be noted that according to NYSDEC (1999), these criteria do not necessarily represent the final concentrations that must be achieved through sediment remediation. Comprehensive sediment testing and risk management are necessary to establish when remediation is appropriate and what final contaminant concentrations the sediment remediation efforts should achieve (NYSDEC, 1999).

Both near-Site data (Table 2) and background data (Table 3) frequently exceed the freshwater screening values. Every sample (including all of the background samples) exceeds the LEL for at least one metal, and most samples exceed the LEL for multiple metals. In addition, several metals detected in near-Site sediment samples exceed the

Sediment Remedial Investigation Report

Former General Motors Assembly Plant Site Sleepy Hollow, New York

SEL, and some metals in background samples (i.e., lead, mercury) also exceed the SELs. Given the high frequency of LEL exceedance in the background samples, and recognizing that one objective of the screening criteria comparison was to identify site-related areas where the concentrations (and possibly the sediment toxicity) may be greatest, SELs were used to identify possible sediment COPC for subsequent sample ranking. Using this method, those metals that are below the SEL for all near-Site sediment samples (and therefore are not considered COPC) are arsenic, cadmium, and nickel. Metals above the SEL and background (and considered COPC) are chromium, copper, lead, mercury and zinc.

With regard to organic constituents, concentrations of PCBs and PAHs were also generally greater than the LELs in near-Site data (and the background data for PCBs), but lower than SELs. As such, using the same approach used above for metals (i.e., use of SELs to select COPC because of the high frequency of LEL exceedance), PCBs and PAHs are not identified as COPC because concentrations are lower than the SELs. PCBs were reported at relatively low concentrations in both background (maximum = 2.5 mg/kg, in SED43B) and near-Site sediment samples (maximum = 4.81 mg/kg, in sample SED10C, which is a 6- to 12-inch sample within 10-feet of OF-1). Total PCB concentrations (both near-Site and background) exceed the LEL value of 0.07 mg/kg, but not the SEL of 5.3 mg/kg. The near-Site sediment data indicate that PCBs are detected most frequently in the near shore stations, and at stations near the Tarrytown Harbor navigation channel. Many of the samples collected from the offshore periphery of the study area (e.g., SED5, SED11, SED12, SED16, SED23, SED24, SED27, and SED28) were non-detect for PCBs.

Similarly, PAHs were reported at relatively low concentrations in both background (maximum = 3.83 mg/kg in SED43B) and near-Site sediment samples (maximum = 16.2 mg/kg, in sample SED5C, from the 6- to 12-inch depth interval collected approximately 1,100 feet offshore of OF-1). Although several near-Site sediment PAH concentrations exceed the LEL of 4.0 mg/kg, they are well below the SEL of 100 mg/kg.

A summary of Steps 3 and 4 (which leads to identification of final COPCs) is provided below.

Sediment Remedial Investigation Report

Former General Motors Assembly Plant Site Sleepy Hollow, New York

Constituent	Maximum Near-Site Exceeds Screening Value	Final COPC ¹
Barium	No	No
Cadmium	No	No
Chromium	Yes	Yes
Copper	Yes	Yes
Lead	Yes	Yes
Mercury	Yes	Yes
Zinc	Yes	Yes
PAHs	No	No
PCBs	No	No

Note:

 Final COPC are identified as those constituents with near-Site concentrations significantly greater than the appropriate screening value [i.e., NYSDEC (1999) SELs for metals and Persaud et al. (1990) SELs for PCBs and PAHs] [These COPCs are also significantly greater than background (Step 3)].

Based on the above evaluation (specifically Steps 3 and 4), it is apparent that near-Site concentrations of some inorganic constituents (chromium, copper, lead, mercury and zinc) exceed both background and screening values (SELs) and therefore, according to NYSDEC (1999) guidance, there is potential for these higher inorganic concentrations to be associated with adverse ecological effects (although there are uncertainties associated with the screening values as described in latter sections of this document). Unlike inorganic constituents, all PCB and PAH concentrations are below the SEL, indicating adverse effects are not likely for "the majority of sediment-dwelling organisms".

NYSDEC (1999) indicates that if screening criteria are exceeded then additional investigation is generally needed to determine the need for remedial action. To identify locations that could pose the greatest potential risk to benthic invertebrates, a sediment ranking approach has been employed (Step 5 below). This ranking approach focuses only on inorganic COPCs (specifically, chromium, copper, lead, mercury and zinc) that exceed SELs. Because no outliers exist in the background data set for these metals, as discussed previously, all data for these metals were ranked. PCBs, PAHs and inorganic constituents whose concentrations do not exceed SELs are not considered "final" COPCs and are not included in the ranking approach because they are present at a level where adverse effects are not likely for the majority of benthic organisms.

Sediment Remedial Investigation Report

Former General Motors Assembly Plant Site Sleepy Hollow, New York

6.5 Sediment Ranking

The purpose of the sediment ranking is to identify those sample locations that exhibit the highest COPC levels relative to SELs and which therefore have the greatest potential to affect the benthic community. The methods used to rank locations are described below. A sediment ranking approach (or quotient approach) is used to identify which sample locations exhibit the highest metal concentrations relative to screening values. Each sediment metal COPC concentration is "normalized" to its respective screening value (e.g., SEL) using a quotient approach as described by Long et al. (1998). This approach has been documented in the scientific literature [(Hyland et al. (1999); Long and Morgan (1990); MacDonald et al. (2000); Ingersoll et al. (2002); Crane et al. (2002)] and has been applied at various sites across the country, including New York State (e.g., NYDEC, 2004; USEPA, 2005).

For each inorganic COPC, the ratio of the sample COPC concentration to the SEL is calculated, and these ratios are summed for all COPCs in each sample. As stated by Hyland et al. (1999), summed quotients provide measures of the cumulative magnitude of COPC levels relative to effect thresholds and can be used to rank and compare locations in terms of their potential toxicity to benthic organisms. In these evaluations, sample-specific summed quotients are assigned a ranking of low, moderate or high relative to background.

COPC	COPC Concentration (mg/kg)	Severe Effect Level (mg/kg)	Ratio ¹
Chromium	32.2	110	0.29
Copper	19.2	110	0.18
Lead	16.9	110	0.15
Mercury	0.07	1.3	0.05
Zinc	96.3	270	0.36
		Sum ² =	1.03

The following provides an example calculation using background sample SED40A:

Notes:

1. Ratio of the COPC concentration to the SEL.

2. Sum of the individual ratios.

The cumulative site ranking for metals for both the near-Site and background data is presented in Table 6. These rankings are based on the fact that the highest sum for

Sediment Remedial Investigation Report

Former General Motors Assembly Plant Site Sleepy Hollow, New York

the background samples is approximately 6.0 (SED43B = 5.7), indicating that rankings above 6 may identify the priority areas of concern relative to background conditions.

Based on the spatial extent of the highest ranked stations for metals, areas of potential concern were identified. Stations outside of these areas have quotient sums that are comparable to background, or represent very isolated cases. The samples with the highest rankings (SED10B, SED10A, SED10C, and T07A) are found at the mouth of OF-1. Additional locations with the highest relative rankings occur offshore of OF-1 (one area encompassing offshore samples SED25 and SED21, and a second area encompassing SED1, SED6, SED7, and SED13). These potential areas of concern are separated from the Site shoreline by the Tarrytown Harbor navigation channel. This channel was last dredged in 2001 and has been reportedly dredged at a frequency of about once every 10-15 years as needed. Although these offshore stations are ranked in the same interval (greater than 6) as OF-1, the actual offshore sums are no higher than 9, compared with sums as high as 25 at OF-1.

Beyond these offshore areas are two isolated sample points ranked higher than 6.0. One of these points (SED34) located approximately 100-feet off the west side of the Site is completely surrounded by additional samples ranked equivalent to background, some within 20-30 feet from the higher ranking sample location. The second sample (T04C), located more than 2,000 feet downstream of the Site, is approximately 100 feet offshore of the former MGP site and near the entrance to the Tarrytown Marina. This sample point is also directly adjacent to samples ranked equivalent to background. As such, these represent isolated cases rather than priority areas of concern.

6.5.1 PCBs and PAHs

As stated above, PCBs and PAHs are not evaluated using the summed quotient approach because they are not considered COPCs as their concentrations do not exceed SELs. As such, PCB and PAH data are discussed qualitatively below.

Total PCB concentrations in all samples are below the SEL of 5.3 mg/kg (Table 2), ranging from non-detect to 4.81 mg/kg. The distribution of PCBs indicates that approximately 99% of the samples exhibited total PCBs <4 mg/kg, 97% <3 mg/kg, 93 % <2 mg/kg, and 80% <1 mg/kg. Samples in the top 3 percent bracket are SED10C (6-12 inches) at the mouth of OF-1, as well as SED36C (6-12 inches), and SED38 B (2-6 inches) at the upstream end of the near-Site area. However, lower total PCB

Sediment Remedial Investigation Report

Former General Motors Assembly Plant Site Sleepy Hollow, New York

concentrations (0.7-1.27 mg/kg) were observed in the surface (0-2-inch) interval at these three stations.

For total PAHs, concentrations in all samples were well below the SEL of 100 mg/kg (Table 2), ranging from non-detect to 16.2 mg/kg. The distribution of PAHs indicates that approximately 99% of the samples exhibited total PAHs <16 mg/kg, 97% <12 mg/kg, 85 % <8 mg/kg and 40% <4 mg/kg. Samples in the top 3% bracket are SED10B (2-6 inches) at the mouth of OF-1, SED5C (6-12 inches) approximately 1,000 feet offshore of OF-1, and SED30A (0-2 inches), upstream of OF-2 near the lighthouse. PAH concentrations on the order of 4 to 12 mg/kg are common throughout the near-Site area, including the majority of stations sampled within the Tarrytown Harbor.

6.6 Phase I Evaluation Summary

This screening-level evaluation has been conducted to identify constituents of potential concern, and prioritized areas for further evaluation. NYSDEC's Guidance for Screening Contaminated Sediments (NYSDEC 1999) provided a framework for this evaluation. Using that framework, a step-wise adaptation to the guidance was developed and implemented to address the unique aspects of the data distribution within this section of the Hudson River. The adaptation included use of SEL benchmarks for screening and prioritization, because the concentrations of metals observed in the near-Site and background areas are typically above the LEL, with a number of locations exhibiting one or metals above the SEL. A sediment ranking approach described by Long et al.(1999) was used to systematically identify and rank areas based on the degree (ratio) to which they exceed the SEL for one or more metals. Areas (contiguous stations) that rank higher than background stations were prioritized for further action. PCBs and PAHs were not added to the ratios developed for metals, because no samples exceeded freshwater SELs. Rather, the ranges and distributions of PCBs and PAHs were qualitatively evaluated.

The COPCs for the Site are identified based on a comparison of near-Site sediment data to screening values and statistical comparisons to background concentrations. The sediment evaluation presented in this memorandum identifies the primary inorganic sediment COPCs for the Site as chromium, copper, lead, mercury, and zinc. For metals, concentrations in both near-Site and background samples frequently exceed the lower generic sediment quality criteria (i.e., LEL). Given the frequency of LEL exceedance in background samples, SELs were used to identify COPCs. Chromium, copper, lead, mercury, and zinc are identified as COPCs for the near shore

Sediment Remedial Investigation Report

Former General Motors Assembly Plant Site Sleepy Hollow, New York

area of the Site based on elevated concentrations above background and exceedance of the SEL. However, with the exception of a few higher lead concentrations in the immediate vicinity of OF-1, most COPC concentrations were the same order of magnitude as the SEL. Sediment ranking techniques were used to identify locations of potential concern.

PCBs and PAHs have been detected in near-Site sediment samples at concentrations above background and LELs, but no areas have PCB or PAH levels above SELs, even at the mouth of Outfall OF-1.

Based on this analysis, the following conclusions are derived:

- The most pervasive chemical contaminants found throughout the tidal Hudson River, between Troy and Manhattan, are metals. Likewise, metals are by far the most pervasive constituent of concern observed in the sediment investigations conducted in the Site vicinity, including the background area. In addition to metals, sediments near the historically commercial/industrial waterfront in the Tarrytown Harbor area also exhibit levels of organic contaminants such as PCBs and PAHs that can be found in similar urban harbors.
- Most inorganic constituents detected in both background and Site data exceeded the lower LEL value, and those that exceeded the higher SEL, were only marginally greater than the SEL. Overall, stations at the mouth of Outfall OF-1 exhibit the highest relative rankings for metals. In fact, with the exceptions of lead at the mouth of Outfall OF-1, inorganic COPC concentrations were generally the same order of magnitude as the SEL.
- Potential areas of concern were identified based on comparison of near-site data to background concentrations and generic screening criteria, and the sediment ranking approach. These rankings do not necessarily indicate areas where impairment (e.g., impacts to benthic invertebrates) has occurred, but merely indicates areas with the highest potential for ecological risks within the study area.
- Areas ranked in the highest category (greater than 6) would be considered priority areas for an evaluation of potential impacts from metals, relative to the majority of rankings in near-Site areas (greater than 4.5 to 6), and background areas (less than or equal to 5.7). Areas of potential concern identified through

Sediment Remedial Investigation Report

Former General Motors Assembly Plant Site Sleepy Hollow, New York

this screening process do not represent areas of confirmed impact. Rather, these areas provide a general boundary within which the impact to benthic communities can be further assessed.

 PCBs and PAHs were found at levels less than SELs. The observed distribution of these constituents does not suggest any specific areas where significant adverse impacts to benthic communities from these constituents would be anticipated. The areas of potential concern prioritized by inorganic COPC ranking encompass the range of PAH and PCB concentrations in the near-Site area.

Based on the results of above evaluation and discussions with NYSDEC, a supplement (Phase II) site-specific sediment investigation was proposed to further assess potential impacts to the Hudson River, and to determine if there is evidence of significant benthic community impairment in the near-Site areas relative to background conditions. Data of Phase II investigation are presented in Section 7.

Sediment Remedial Investigation Report

Former General Motors Assembly Plant Site Sleepy Hollow, New York

7. Phase II (2006) Sediment Investigation

Following the Phase I data evaluation, a supplemental (Phase II) sediment investigation was conducted by BBL. The scope of the study was based on the evaluation of previous (1997 through 2004) sediment data (described in Section 6) and discussions with NYSDEC. As part of these discussions, the list of COPCs was reduced to five metals (chromium, copper, lead, mercury, and zinc).

The specific objectives for the supplemental Phase II sediment investigation, as stated in the 2006 SSIWP (BBL, 2006), were as follows:

- Evaluate potential Site-specific COPC-related toxicity to benthic organisms using the equilibrium partitioning sediment benchmark (ESB) approach, based on sediment and pore water chemistry [United States Environmental Protection Agency (USEPA), 2005a].
- 2. Evaluate whether benthic communities in near-Site areas of interest are significantly impaired relative to representative background locations, based on a benthic invertebrate survey and calculation of biological metrics.
- 3. Evaluate whether sediments in near-Site areas of interest are more toxic to representative benthic organisms than sediments from background locations, based on the findings of whole sediment bioassays.
- 4. Evaluate whether bivalves in near-Site sediments have bioaccumulated COPCs at significantly higher levels than those from background sediments.
- 5. Provide a general depositional profile of the near-Site area of interest and representative background areas through sediment aging techniques (geochronology).
- 6. Provide representative vertical concentration profile of COPCs in the near-Site area of interest, including the immediate vicinity of OF-1, and background areas.
- Characterize the physical and geotechnical properties of sediments in the vicinity of former industrial outfall OF-1 to support design of an interim remedial measure (IRM) under consideration for this area.

Sediment Remedial Investigation Report

Former General Motors Assembly Plant Site Sleepy Hollow, New York

The Phase II sampling was conducted in September and October 2006. Following is a description of the sampling locations, sampling methods, and analyses that were conducted. The results from the Phase II sampling are presented in Phase II data evaluation (Section 8).

7.1 Sampling Locations

In accordance to the NYSDEC-approved 2006 SSIWP (BBL, 2006), sediment samples were collected from 56 locations, including 29 near-Site stations and 11 background stations. Sixteen additional cores were collected in the vicinity of OF-1 for detailed COPC delineation and/or geotechnical characterization. The specific sampling areas (in reference to historical sampling locations) were as follows:

- At the mouth of OF-1, in the vicinity of historical locations SED10 and T07A;
- Off-shore of OF-1, in the vicinity of historical locations SED21 and SED25;
- Off-shore of OF-1, in the vicinity of historical locations SED1, SED6, SED7, and SED13;
- Near-Site Upstream upstream of OF-3, in the vicinity of historical locations T11C, T12A, T12D, and T12E;
- Near-Site Downstream downstream of OF-1, in the vicinity of historical locations T05E, T05I, T03B, and T03E; and
- Background approximately 6,000 to 30,000 feet upstream of the Site, in the vicinity of historical locations 302, 306, 408, 504, 506, SED40, SED43, and T14D.

Sediment sampling locations were sequentially numbered from upstream to downstream. Stations SED100 through SED110 are background stations. Stations SED111 through SED139 are near-Site stations. Stations SED140 through SED155 are delineation stations near OF-1. Data from the delineation stations are treated separately and excluded from the background and near-Site data comparisons. The OF-1 area is represented by near-Site station SED126 for all data comparisons.

Three deep coring locations were field-adjusted from their proposed locations to avoid the cable right-of-way as follows:

Sediment Remedial Investigation Report

Former General Motors Assembly Plant Site Sleepy Hollow, New York

- Proposed coring location of SED130 was adjusted to the location of SED127 which is approximately 380 feet north-northwest of SED130.
- Proposed coring location of SED137 was adjusted to the location of SED138 which is approximately 1,020 feet south-southwest of SED137.
- Proposed coring location of SED132 was adjusted to the location of SED128 which is approximately 470 feet northeast of SED132.

Additional adjustments of the locations were made due to the inability to collect sediment samples from certain locations. These adjustments are as follows:

- Proposed location SED136 could not be sampled because the water was too deep (29 feet). This station was relocated easterly to shallower waters.
- Proposed location SED120 was located on an oyster reef, and sediment recovery was insufficient for sampling. This station was relocated twice, in a northerly direction, until sediment recovery and sampling was feasible.

Actual sediment sampling locations are presented on Figure 4 (background) and Figure 5 (near-Site). The OF-1 area core sample locations are also shown on Figure 5.

7.2 Sampling Methods

Sediment sampling activities were performed in accordance with the 2006 SSIWP (BBL, 2006c). Sediment samples were collected from a pontoon boat, using the appropriate sampling equipment specific to each task. Multiple samples and/or sample types taken at the same station were obtained within a few feet of one another to obtain co-located sub-samples or duplicate samples for each station. At each location, several types of sediment samples were collected.

Surficial sediment was collected using a Ponar dredge. Several grabs were collected from the same location, and the dredge contents were homogenized in a stainless steel bowl. Subsamples of the resulting sediment were used for the metals analyses and sediment toxicity tests. If bivalves were present they were retained for biological tissue analysis.

Sediment samples for the ESB parameter analyses were collected using 3-inch ID Lexan® tubing mounted to a push-core sampler. These samples included a minimum

Sediment Remedial Investigation Report

Former General Motors Assembly Plant Site Sleepy Hollow, New York

of two surficial core samples (0 to 6 inches) for pore water analyses and two core samples (0 to 6 inches) for AVS/SEM and TOC. Individual cores were combined in the laboratory to provide sufficient sample volume for one analysis per station.

The benthic invertebrate community samples were also collected using a Ponar dredge, in a manner consistent with the NYSDEC (2002) Quality Assurance Work Plan for Biological Monitoring in New York State. Sediment grab samples were collected in triplicate at each of 29 near-site stations and 11 background stations. The sediment from each grab was sieved (standard U.S. No. 30) and the sieve contents were placed in plastic jars and preserved with 70% isopropyl alcohol. Water quality measurements were also recorded at each station, and included measurement of DO, water temperature, salinity, ORP, pH, conductivity, and turbidity. Water velocity was also measured. Physical descriptions of the sediment were recorded for each grab sample.

Bivalve tissue samples were collected at the request of NYSDEC to evaluate the potential for bioaccumulation of COPC from sediment. Seventeen bivalve tissue samples were collected from the Hudson River, including 7 samples from background (reference) locations and 10 samples (including one replicate) from near-Site locations. The bivalve samples were collected by removing live specimens of bivalves (Rangia cuneata) from sediment samples that were collected as part of the sediment investigation, and by performing supplemental sediment collection looking specifically for bivalves. Originally, the 2006 SSIWP proposed the collection of bivalve tissue samples from 10 near-Site locations and 10 background locations, subject to availability of bivalves. Because bivalves were not encountered at many proposed locations following a reasonable level of effort, some bivalve samples were collected from alternate locations (Table 1).

The sediment cores were collected using vibracoring equipment. The lengths of the cores recovered ranged from 1 to 9 feet depending on field conditions. The sediment cores were sectioned into 2-inch increments in the uppermost foot, and into 4-inch intervals from the 1-foot depth to the bottom of the core. The exception was core SED126, which encountered refusal at approximately 16 inches and top one foot (six 2-inch increments) of sediment was retained for laboratory analyses.

Copies of 2006 sediment sampling field logs are provided in Appendix B.

Sediment Remedial Investigation Report

Former General Motors Assembly Plant Site Sleepy Hollow, New York

7.3 Analyses - Surface Sediment

The surficial (0 to 6 inch) sediment samples were analyzed for sediment chemistry, bioavailability parameters (SEM, AVS, TOC, and pore water), laboratory bioassay, invertebrate community, and bivalve tissue sampling.

Sediment Chemistry

The bulk sediment chemistry samples were analyzed for chromium, copper, lead, mercury, and zinc. The analyses were performed by CAS in Rochester, New York.

Sediment SEM, AVS, TOC and Pore Water

Surficial bulk sediment samples were analyzed for AVS, SEM, and TOC. Pore water samples were collected from the same locations as the bulk sediment samples. Pore water was extracted from sediment by double centrifuge, without filtration, in a nitrogen atmosphere glove box at CAS, Kelso, Washington. Preserved pore water extracts were returned to CAS for analyses of COPCs (chromium, copper, lead, mercury, and zinc), and non-preserved aliquots of each pore water extract were shipped in coolers at 4°C to CAS for analysis of soluble (dissolved) organic carbon, pH and hardness.

Sediment Physical Characterization

Sediment samples from all Ponar dredges performed for bulk sediment chemistry and biological sampling were measured for grain size distribution by EMCON-OWT, Inc., (a subcontractor of CAS).

Benthic Invertebrate Community

The benthic community samples were submitted to Aquatec Biological in Willston, Vermont for taxonomic identification. The samples were picked to remove organisms using a magnifying lens, and the macroinvertebrates were counted and identified to the lowest practical taxonomic level (typically species-level). In instances when there were more than 100 organisms, the taxonomy laboratory randomly selected a 100-organism sub-sample for taxonomic identification. The remaining organisms in the sample were counted, and the total taxonomic counts for the sub-sample were adjusted by the proportion of the total number of specimens to represent a comparable count for the entire sample. For example, if a sample contained a total of 300 organisms, and 4 polychaete worms were identified in the 100-organism sub-sample, then the total

Sediment Remedial Investigation Report

Former General Motors Assembly Plant Site Sleepy Hollow, New York

sample count would be adjusted to reflect 12 polychaete worms. Eight of the samples were re-picked for quality assurance, and yielded a picking efficiency of approximately 95 percent.

Sediment Toxicity

Sediment from each of the 29 near-Site locations and 11 background locations were submitted for 28-day bioassays using a marine amphipod (Leptocheirus plumulosus). The tests were conducted by EnviroSystems Inc. of Hampton, New Hampshire. The sediment tests were conducted using the protocols established by USEPA (2001) Methods for Assessing the Chronic Toxicity of Marine and Estuarine Sediment-Associated Contaminants with the Amphipod Leptocheirus plumolosus. Eight replicates were performed for each sample.

Bivalve Tissue

The bivalves were submitted whole to CAS for tissue removal and analyses of COPCs (chromium, copper, lead, mercury, and zinc).

7.4 Analyses - Subsurface Sediment

The subsurface sediment samples were analyzed for sediment chemistry, geochronology, and geotechnical analyses.

Sediment Chemistry

Sediment cores were collected from 7 near-Site locations (including station SED126 at OF-1), 3 background locations, and 13 locations in the vicinity of OF-1. Each core (up to 10 feet) was sectioned into 1-foot (near-Site and background) or 2-foot (OF-1) intervals and submitted to CAS for analyses of chromium, copper, lead, mercury, and zinc.

Sediment Geochronology

Deeper core sampling was conducted for geochronology profiles to determine the deposition rates of representative near-Site and background areas. The geochronology evaluation was conducted by analyzing sections of sediment cores for specific radioisotopes. The occurrence of these isotopes can be used to determine the approximate age and deposition rates of the sediment. The sediment samples were

Sediment Remedial Investigation Report

Former General Motors Assembly Plant Site Sleepy Hollow, New York

submitted to Geonuclear, Inc. in Orangeburg, New York for radiological chronology analyses. Analysis of specific intervals was performed at the discretion of Geonuclear's analyst. The radiological spectral analyses were performed by Environmental Inc. Midwest Laboratory in Northbrook, Illinois, a subcontractor of Geonuclear Inc.

Geotechnical Analyses

For geotechnical characteristics near OF-1, three sediment cores (SED147, SED149 and SED150) were collected within the deep chemistry grid established at OF-1 (Figure 5). The cores extended to a depth of approximately 10 feet or refusal (e.g., SED147 was a short core due to refusal at 10 inches). Core SED149 was sectioned into 2-foot undisturbed samples for one dimensional consolidation testing and bulk density determination. SED149 served as a replacement for SED148, which was planned closer to OF-1, but could not be advanced due to refusal at less than 1-foot. SED-149 also served to provide deep geotechnical data planned at SED147, and was analyzed for water content, bulk density, specific gravity, Atterberg limits, grain size with hydrometer, and consolidation (single drainage and load response).

A matrix summarizing the type of samples collected at each station during 2006 study is provided in Table 7.

7.5 Quality Assurance/Quality Control

Quality assurance/quality control procedures were implemented during the 2006 study and were carried out in accordance with the 2006 SSIWP (BBL, 2006c). QA/QC activities for field sampling, laboratory analysis and data evaluation are described below.

7.5.1 Field QA/QC

Field sampling activities were performed following standard operating procedures as described in the 2006 SSIWP (BBL, 2006c). The field instruments used for measuring field water quality parameters such as salinity, temperature, conductivity, dissolved oxygen, and pH were calibrated in accordance with the manufacturers' specifications and checked on a daily basis. Field QA/QC samples were collected and described as follows:

• Field duplicates were used to assess consistency of sampling methods, sample homogeneity, and precision of laboratory analytical procedures. Field

Sediment Remedial Investigation Report

Former General Motors Assembly Plant Site Sleepy Hollow, New York

duplicates for sediment or pore water were collected at a frequency of 10% of the total number of samples collected per matrix. Duplicate samples were submitted for laboratory analyses for the same chemical parameters as the parent samples.

- Equipment (rinsate) blanks were collected only in cases where non-dedicated sampling devices were used for sample acquisition. Equipment blanks were prepared by pouring analyte-free water over decontaminated sampling equipment to verify that the decontamination procedure had been adequately carried out and that there was no cross-contamination of samples occurring due to the equipment itself. Equipment blanks were collected at a frequency of 5% of the total number of samples collected with non-dedicated sampling device and submitted for laboratory analyses for the same analytical (chemical) parameters as that of those samples collected using the equipment.
- MS/MSD samples were used to assess the accuracy and precision of laboratory methods. MS/MSD samples were prepared by spiking the samples with known quantities of target analytes at the laboratory prior to undergoing the analysis. MS/MSD samples were prepared at a frequency of 5% of the total number of samples collected per matrix.

Field duplicate results are presented with the primary sample results in the data tables (Section 8). Results of equipment blanks and MS/MSD are presented within the laboratory reports submitted to the NYSDEC separately.

7.5.2 Laboratory QA/QC

Sample analyses and method QA/QC procedures were performed by the laboratories in accordance with the requirements of appropriate analytical methods described in the 2006 SSIWP (BBL, 2006c).

7.5.3 Laboratory Data QA/QC

Laboratory analytical data for the Phase II data set were evaluated and validated by Conestoga-Rovers & Associates (CRA). The results of the chemistry data validation are documented in the DUSRs prepared for each sample delivery group in accordance with the Guidance for Development of Data Usability Summary Reports (NYSDEC, 2002). The primary objective of the DUSR is to determine whether or not the data, as presented, meet the project-specific criteria for data quality and data use. The DUSRs

Sediment Remedial Investigation Report

Former General Motors Assembly Plant Site Sleepy Hollow, New York

confirm that the data-quality objectives outlined in the 2006 SSIWP were met, and provide the final validated laboratory data tables for all samples. All analytical data included in the RI Report reflect the validated data including any adjustments, if applicable, based on the DUSRs. The DUSRs produced associated with this sediment investigation are provided to the NYSDEC under separate cover.

Sediment Remedial Investigation Report

Former General Motors Assembly Plant Site Sleepy Hollow, New York

8. Evaluation of the Phase II Sediment Data

This section presents data collected during 2006 (Phase II) sediment investigation and evaluation of biological impacts with all relevant data sets using a weight-of-evidence approach.

As described in Section 7, the 2006 sediment investigation integrated bulk sediment chemistry with sediment toxicity benchmark and bioaccumulation parameters, whole sediment toxicity testing, and benthic community assessment throughout the background and near-Site study areas. Data of chemistry, geochronology and physical/geotechnical characterization were also collected in the vicinity of OF-1 to assist in the evaluation of need for remedial action. 2006 study surface sediment data and sampling locations are presented on Figures 13 through 16 in four segments.

8.1 Surface Sediment Chemistry Data

Surficial (0-6 inches) sediment COPC data from 29 near-site locations and 11 background locations are presented in Table 8 (near-Site) and Table 9 (background). At near-Site locations, COPC concentrations ranged from 13.8 to 148 mg/kg for chromium, 9.3 to 152 mg/kg for copper, 10.2 to 1,520 mg/kg for lead, non-detect to 2.6 mg/kg for mercury, and 43.1 to 1,260 mg/kg for zinc (Table 8). Sediment sample SED126, located in the immediate vicinity of OF-1, exhibited some of the highest COPC concentrations (i.e., for chromium, lead, and zinc).

For background locations, chromium, copper, lead, and zinc were detected in each of the 11 sediment locations (Table 9). Mercury was detected in 9 of the sample locations. COPC concentrations ranged from 8.4 to 89.4 mg/kg for chromium, 8.3 to 75.1 mg/kg for copper, 6.3 to 87.2 mg/kg for lead, non-detect to 0.99 mg/kg for mercury, and 28.7 to 205 mg/kg for zinc.

8.2 Background Evaluation

Background screening levels (BSLs) were calculated for each COPC using the 2006 data from sample stations SED100 through SED110. The BSLs are intended to represent ambient background conditions in which constituents may be present due to anthropogenic inputs unrelated to Site activities. Consistent with USEPA guidance for establishing BSLs (USEPA, 1989; 1992; 1998a; 1998b) the statistical methods are based on an upper confidence interval for an upper percentile, otherwise referred to as an upper tolerance limit or UTL. The BSLs represent estimates of the 99 percent upper

Sediment Remedial Investigation Report

Former General Motors Assembly Plant Site Sleepy Hollow, New York

confidence limit for the 95th percentile, or a 99/95 UTL. Various parametric and nonparametric methods for calculating UTLs are recommended by USEPA and generally depend on the statistical distribution of the data and the sample size. The data for chromium, copper, mercury, and zinc were generally consistent with normal distributions, and lead was consistent with a lognormal distribution.

The BSLs and corresponding statistical methods applicable to each data set are summarized in Table C-1 (Appendix C). BSLs for chromium, copper, mercury, and zinc are based on the normal distribution. With the small sample sizes (n=11), the BSLs for these metals exceed the maximum concentration by a factor of approximately 3 to 4. While it is not uncommon for a UTL to exceed the maximum, it is important to recognize that this extrapolation introduces a source of uncertainty when comparing the BSL to Site data.

The BSL for lead data (which were lognormally distributed) was non-parametric, and is considered to be more indicative of background concentrations because the lognormal BSL is nearly an order of magnitude greater than the maximum. The non-parametric BSL is determined by a discrete sample from the data set. The appropriate rank-ordered sample is determined based on the sample size required to achieve the desired coverage. To represent a 99/95 UTL, any data set with less than n=127 samples will require the use of the maximum concentration to estimate a BSL. Accordingly, for lead (n=11), the maximum value is selected and will provide 91% coverage of the data on average.

Near-site surficial sediment COPC data from 29 stations were compared to BSLs, as summarized in Table C-2 (Appendix C). Concentrations for COPCs at the following near-Site locations were observed to be greater than the BSLs:

- Chromium SED126;
- Copper SED123, SED125, SED126, SED130, SED132, and SED136;
- Lead SED117, SED121, SED123, SED125, SED126, SED130, SED131, SED132, SED133, and SED136;
- Mercury SED123, SED131, SED132, SED134; and
- Zinc SED126.

Sediment Remedial Investigation Report

Former General Motors Assembly Plant Site Sleepy Hollow, New York

8.3 Surface Sediment Toxicity Benchmark Data

A primary objective of the 2006 Phase II investigation was to evaluate site-specific factors that influence the bioavailability and subsequent toxicity of metals in the bulk sediments. The USEPA's Contaminated Sediment Remediation Guidance for Hazardous Waste Sites (USEPA, 2005b) concludes, based upon years of study, that "(c)oncentrations of bulk (total dry weight basis) metals in sediment alone are typically not good measures of metal toxicity" (Page 2-6). To address this problem the USEPA has finalized guidance for estimating metal toxicity based on the site-specific bioavailable metal fraction (Procedures for the Derivation of Equilibrium Partitioning Sediment Benchmarks (ESBs) for the Protection of Benthic Organisms: Metal Mixture: USEPA, 2005a). This bioavailable fraction is measured directly in pore water and/or predicted based on the relative sediment concentrations of AVS, SEM (cadmium, copper, lead, nickel, silver, and zinc), and TOC. Both AVS and TOC are capable of sequestering and immobilizing a range of metals in sediment, thus rendering them non-toxic.

Consistent with the USEPA approach, the Phase II investigation included the following: 1) evaluation of the relative concentrations of SEM to AVS and TOC, which provide a basis for evaluating the capacity of sediments to bind metals and render them nontoxic; and 2) direct measurement of metal concentrations in sediment pore water and comparison of those concentrations to NYSDEC and USEPA water quality criteria for protection of aquatic life.

8.3.1 AVS/SEM, and TOC Data

The ESB assessment included measurements of AVS, SEM, and TOC in bulk sediments from the same stations and depth interval as the surficial bulk sediment chemistry. The SEM, AVS, and TOC data are presented in Table 8 (near-Site) and Table 9 (background). The data were evaluated using the following methods developed by USEPA (2005a):

- Sediment in which (SEM AVS)/f_{oc} < 130 µmoles/goc should pose no risk of adverse biological effects (e.g. toxicity not predicted) due to cadmium, copper, lead, nickel, and zinc.
- Sediment in which (SEM AVS)/ f_{oc} >130 umols/goc < 3,000 µmols/goc fall in the uncertain range and may require further Site-specific studies to resolve potential toxicity. due to cadmium, copper, lead, nickel or zinc.

Sediment Remedial Investigation Report

Former General Motors Assembly Plant Site Sleepy Hollow, New York

 Sediment in which (SEM – AVS)/ f_{oc} > 3,000 µmols/goc will likely result in adverse biological effects (toxicity predicted) due to cadmium, copper, lead, nickel or zinc.

Calculation of the (\sum SEM – AVS)/f_{oc} benchmark values requires measurable levels of AVS and TOC. In this data set, AVS was lower than MDLs at 9 of 11 background stations and 4 of 29 near-Site stations. Where AVS was below the MDL, benchmarks were developed by estimating AVS at one-half the MDL. AVS levels are the highest in the near-Site area, and decline with distance upstream of the Site as the River transitions from moderately saline to near freshwater conditions.

The (\sum SEM – AVS)/f_{oc} values for the near-Site samples ranged from less than zero to 2,189 µmoles/g_{oc}. All but one of the sediment samples were below the USEPA lowest benchmark of 130 µmoles/g_{oc}. The (\sum SEM – AVS)/f_{oc} values for the background samples ranged from less than zero to 39 µmoles/g_{oc}. Consistent with USEPA guidance, sediment conditions should pose no risk of adverse biological effects to the benthic environment due to SEM metals (i.e., cadmium, copper, lead, nickel, and zinc). The only sediment sample which exceeded 130 µmoles/g_{oc} was sample SED126 (2,189 µmoles/g_{oc}); however, this sample was below the upper benchmark of 3,000 µmoles/g_{oc} fall in a range of uncertainty in which the potential for metal toxicity is resolved with additional site-specific data.

The uncertainty regarding SED126 is further evaluated (in subsequent sections of this report) based on additional site-specific lines of evidence, including pore water data, sediment toxicity testing, and benthic macroinvertebrate survey data.

8.3.2 Pore Water Data

Sediment pore water samples were collected as an additional line of evidence that compliments the sediment ESBs based on AVS, SEM and TOC. The pore water data are presented in Table 10 (near-Site) and Table 11 (background). The pore water data were evaluated based on comparison to background (using BSLs) and comparison to water quality standards.

For the background comparison, BSLs were calculated for each COPC using the data from the nine background stations that yielded adequate pore water for analysis. The BSLs represent ambient background conditions in which constituents may be present due to anthropogenic inputs unrelated to Site activities. The BSLs and corresponding

Sediment Remedial Investigation Report

Former General Motors Assembly Plant Site Sleepy Hollow, New York

statistical methods applicable to each pore water COPC data set are summarized in Table C-3 (Appendix C). Pore-water BSLs for chromium and copper are based on the normal distribution.

Near-site surficial sediment COPC data from 27 stations were compared to initial BSLs (Table C-4). Concentrations for COPCs at the following near-Site locations are observed to be greater than the BSLs: chromium (SED132 and SED134), copper (SED134), lead (SED114 and SED134), and zinc (SED134).

The pore water results were further evaluated by comparing the data to water quality standards. The Hudson River segment encompassing the near-Site and background study area is classified as Saline Class B waters (SB) in accordance with 6NYCRR Part 864 (Section 864.6 Table 1, Item 2). However, the Site study area exhibits tidally influenced salinities that fall between fresh (< 1 part per thousand [ppt]) and saltwater (> 10 ppt), as defined by EPA (2002). Ten of the 11 near-site locations sampled in September-October 2006 had water column salinities of 5 or 6 ppt. The near-Site reach of the Hudson River is a gaining river (i.e., fresh groundwater flows towards the river), which can drive interstitial water salinities lower than water column salinities. Therefore, aquatic life in this portion of the river includes both freshwater and marine species, and it is appropriate to compare sediment pore water data to both freshwater and marine standards.

A summary of the pore water data and comparison to water quality criteria for protection of aquatic life is presented in Table 12. All concentrations of COPCs detected are below the applicable New York State freshwater criteria. Only one sample of pore water (SED134) marginally exceeds the USEPA freshwater CCC for lead. SED134 is the only sample that exceeds saltwater criteria for lead (both New York State and USEPA). Pore water copper concentrations for all near-Site and background stations were greater than both the New York State and USEPA saltwater criteria. Chromium, mercury, and zinc for near-Site and background pore water were either non-detect or below water quality criteria.

The potential significance of the pore water data relative to water quality criteria or standards is evaluated further based on additional site-specific lines of evidence, including sediment toxicity testing and benthic macroinvertebrate survey data.

Sediment Remedial Investigation Report

Former General Motors Assembly Plant Site Sleepy Hollow, New York

8.4 Bulk Sediment Toxicity Testing

Bulk sediment toxicity tests were conducted as part of the Phase II sediment investigation, based on a request by NYSDEC. The sediment toxicity tests were 28day bioassays using a marine amphipod (Leptocheirus plumulosus), with eight replicates per sample. The endpoints measured in the study were percent survival, growth, and reproduction.

The percent survival, growth, and reproduction data from the sediment toxicity testing is presented in Table 13, and summaries of the test results are presented in Figure 17 (percent survival), Figure 18 (growth), Figure 19 (reproduction, juveniles per amphipod), and Figure 20 (reproduction, offspring per female).

The mean survival for the 11 reference locations ranged from 43% (SED109) to 91% (SED102), and for the 28 near-Site locations the mean survival ranged from 68% (SED133) to 91% (SED131). For reference locations, amphipod growth, measured as mean dry body mass at the end of the bioassay ranged from 0.38 mg (SED109) to 1.58 mg (SED100). The mean dry body weight for near-Site bioassay test organisms ranged from 0.41 mg (SED111) to 1.45 mg (SED119). In measuring reproduction for reference site locations, the mean number of juveniles per amphipod ranged from 0.06 (SED108) to 1.77 (SED104), and the mean number of offspring per female ranged from 0.17 (SED108) to 3.74 (SED104). For near-Site locations the mean number of juveniles per amphipod ranged from 0.09 (SED114) to 1.55 (SED119), and the mean number of offspring per female ranged from 0.07 (SED108) to 3.74 (SED104).

The results from the sediment toxicity bioassays were evaluated by developing sitespecific tolerance limits using the bioassay results from the reference sediment samples, using the methodology described by Hunt et al. (2001). The tolerance limit is a conservative benchmark based on a 95% confidence limit placed on a lower 10th percentile of the data. The tolerance limit represents the lowest performing 10% of reference data. The data's probability distribution (i.e. parametric vs. non-parametric) dictates the most appropriate method for calculating the 95% confidence interval (Hunt et al. 2001). Likewise, outliers can skew the data which can lead to an under- or overestimation of the tolerance value. When outliers are detected, the tolerance limits should be developed from the dataset with and without the outliers (Hunt et al. 2001). Therefore, probability distribution and outlier tests were performed on the survival, growth, and reproduction datasets prior to developing threshold values. ProUCL 4.0 software was used to perform the distribution testing on the data. The distribution of the data was determined with Q-Q plots and statistical tests (Shapiro-Wilk Test).

Sediment Remedial Investigation Report

Former General Motors Assembly Plant Site Sleepy Hollow, New York

Because the datasets were parametrically distributed and were assumed not to contain any temporal or spatial biases, the generalized tolerance limit formula described in Hunt et al. (2001) was used to calculate tolerance limits (Equation 1):

Equation 1:
$$L_{p,lpha} = \overline{X} - K_{p,lpha}S$$

Where:

 $L_{p,\alpha}$ = Lower one-sided parametric tolerance limit

 \overline{X} = Arithmetic mean

- $K_{p,\alpha}$ = Factor for calculating 100(1- α)% Confidence limits on the pth quantile of a normal distribution
- *S* = Standard deviation
 - 8.4.1 Survival Tolerance Limit

Results from the reference area bioassays showed relatively high survival of the test organisms, and generally exceeded 70% survival. Reference site SED109 had a mean survival of 43%, and an outlier analysis (using a Dixon test) indicated that the survival rate for SED109 was a statistically significant outlier (p<0.01). Therefore tolerance values were calculated two ways: with SED109 and with SED109 omitted. It is important to note that survival rate from SED109 is a valid response for reference sediment.

The survival dataset with SED109 (n=11) showed a lognormal distribution, and the mean survival dataset without SED109 (n=10) was normally distributed. The tolerance limit values and summary statistics on the two data sets are presented in Table 14. The tolerance limit for all samples is 58.5%, and the tolerance limit for the dataset without sample SED109 is 76.1%. Of the near-Site data set, only three samples (SED133 = 68.5%, SED136 = 70% and SED132 = 75.6%) had a mean survival less than 76.1%. Two reference (background) stations also had survival below the 76.1% tolerance limit (SED107 = 73.8 % and SED109 = 43%).

Given the uncertainty in what may have caused the reduced survival observed in SED109, a less conservative but appropriate representation of the ambient conditions

Sediment Remedial Investigation Report

Former General Motors Assembly Plant Site Sleepy Hollow, New York

affecting amphipod survival within the study area is a tolerance limit of 58.5%. Using this tolerance limit all of the near-Site samples fall within the range of survival that can be considered background.

8.4.2 Growth Tolerance Limit

The Dixon outlier analysis conducted on the mean growth dataset concluded that no sample location was a statistically significant outlier, and based on the analyses none of the data points were excluded to develop a growth tolerance limit. The growth dataset was normally distributed.

The growth tolerance limit and summary statistics on the data sets are presented in Table 14. A tolerance limit for growth was estimated at 0.377 mg. Growth measurements for all of the near-Site samples were above the tolerance limit.

8.4.3 Reproduction Tolerance Limit

The endpoints for reproduction were observations of the number of juveniles per amphipod and the number of offspring per female. The Dixon outlier analysis conducted on the two endpoints concluded that no sample location was a statistically significant outlier, and based on the analyses none of the data points were excluded to develop reproduction tolerance limits. Both reproduction datasets were lognormally distributed.

The reproduction tolerance limits and summary statistics on the data sets are presented in Table 14. A tolerance limit for juveniles per amphipod was estimated at 0.064, and a tolerance limit for offspring per female was estimated at 0.158. Measurements of both reproduction endpoints for all of the near-Site samples were above the tolerance limits.

8.5 Benthic Macroinvertebrate Community Assessment

A benthic macroinvertebrate community assessment was conducted as part of the Phase II sediment investigation. The purpose of the study was to evaluate whether benthic communities in near-Site areas of interest are significantly impaired relative to representative background locations, based on a benthic invertebrate survey and calculation of biological metrics.

Sediment Remedial Investigation Report

Former General Motors Assembly Plant Site Sleepy Hollow, New York

The species counts from the benthic community data are presented in Table 15. The data indicate a large degree of variability in the number and types of organisms that are present. The organisms that were identified in the grab samples include marine species such as the Eastern oyster (Crassostrea virginica) and the ribbed mussel (Geukensia demissa), and freshwater species such as midges (e.g., Clinotanypus sp.).

Benthic community metrics were also calculated to aid in interpretation of the community data. Metrics are various attributes of the benthic assemblage that change in some predictable way with increased sediment contamination. A list of possible metrics applicable to the Hudson River was provided in the Versar (2003) Hudson River Estuary Biocriteria Report that was prepared for the NYSDEC. The Versar (2003) report includes Margalef species richness, percent abundance of epifauna, number of infauna species, number of polychaete species; and abundance of suspension feeders (#/m²). An additional metric (Shannon-Wiener Index of Diversity), was also calculated. Due to the variability in the individual grabs from the same station, the invertebrate counts from each grab sample were combined for each station.

Species characteristics (e.g., feeding categories, faunal classification) that were used to calculate metric values are presented in Table 16. A summary of the benthic community metrics for each sample is presented in Table 17. Water quality data collected during sampling activities are summarized in Table 18.

Total organism counts (Figure 21) ranged from a total of 50 organisms per sample (SED108, a background sample) to almost 2,000 organisms per sample (SED101, also a background sample). In general, the variability within the total organism counts among replicates and among stations indicates a spotty distribution of the benthic community that varies widely throughout the river bottom, regardless of COPC concentration. For example, at background location SED109, the total number of organisms ranged from 357 organisms (replicate BBR1) to 16 organisms (replicate BBR3). However, these replicate grab samples were collected immediately adjacent to each other. The samples with the highest total organism counts (over 800 organisms total) were all upstream background samples (SED-100,SED-101, SED-102, and SED-103). The uniquely higher counts at the three most abundant organism locations (SED 101 through 103) are primarily attributed to the abundance of juvenile molluscs (Macoma sp.) that were present within these three locations. The abundance of these juvenile bivalves was likely a factor of favorable habitat at these locations. However, the benthic organism counts for the remaining background samples (SED 104 through 109) were comparable to the near-Site stations.

Sediment Remedial Investigation Report

Former General Motors Assembly Plant Site Sleepy Hollow, New York

The values for the other biological metrics are also variable and indicate no overall differences between near-Site stations and background (reference) stations. The Margalef species richness is used to evaluate the overall richness (abundance and diversity) of the benthic community. The species richness values for the near-Site stations are at or above the background values (Figure 22). The abundance of epifauna is a measure of the proportion of organisms that live on the sediment interface. The values for abundance of epifauna within near-Site locations are similar to background (Figure 23). The number of infauna species is a measure of the number of different types of organisms that reside within the sediment. The numbers of infauna species within near-Site locations are similar to background (Figure 24). The number of polychaete species is a metric that measures the diversity of a particular class of annelid worms. The numbers of polychaete species within near-Site locations is similar and often higher than background (Figure 25). The abundance of suspension feeders is a measure of the total number of organisms that derive their food source by filtering the water column. The abundance of suspension feeders within near-Site locations are within the range observed at background locations (Figure 26). The Shannon-Wiener Diversity Index is used to measure diversity and evenness within the benthic community. The diversity values for near-Site locations are similar and often higher (greater diversity) than background (Figure 27).

Collectively, the data from the benthic macroinvertebrate community assessment indicate a spotty distribution of the benthic community that varies widely throughout the river bottom, regardless of COPC concentration. Excluding uniquely high juvenile mollusc abundance in the furthest upstream stations, the overall benthic macroinvertebrate indices observed at the near-Site stations are comparable to those observed at the background stations.

8.6 Bivalve Tissue

Bivalve tissue samples were collected to assess whether COPCs in near-Site and background sediments have bioaccumulated in a representative benthic organism, based on whole body tissue analysis. Seventeen bivalve tissue samples were collected from the Hudson River, including 7 samples from background (reference) locations and 10 samples (including one replicate) from near-Site locations.

The bivalve tissue data for both near-Site and background stations are presented in Table 19 and Figure 28. Lead and mercury were not detected in any of the near-Site locations. Chromium was detected at one background location (SED101 = 0.99 mg/kg) and two near-Site locations (SED129 = 1.2 mg/kg, and SED133 = 1.1 mg/kg). Copper

Sediment Remedial Investigation Report

Former General Motors Assembly Plant Site Sleepy Hollow, New York

was detected in each of the background samples (with concentrations ranging from 2.1 to 4.6 mg/kg) and six of the near-Site locations (with concentrations ranging from 2 to 4.4 mg/kg). Zinc was detected in all of the background samples (9.9 to 15.1 mg/kg) and all of the near-Site locations (8 to 15.3 mg/kg). Lead and mercury were not detected in any of the background samples or the near-Site samples.

These results indicate that COPC concentrations in bivalve tissues from near-Site areas are not elevated in comparison to bivalves from background (reference) locations.

8.7 Weight of Evidence Evaluation

The site-specific measurements of sediment toxicity were evaluated through a sediment quality triad (SQT) approach. The SQT approach includes co-located measurements of: 1) sediment chemistry and bioavailability, 2) sediment toxicity, and 3) benthic macroinvertebrate community structure. Collectively, these data are used to identify potential risks related to sediment-associated COPCs.

The SQT approach integrates environmental chemistry, biological observation, and biological experimentation to determine pollution-induced degradation of sediment (Chapman et al., 1987). The SQT incorporates both laboratory studies (i.e., measurement of chemical concentrations, sediment toxicity testing) and field validation (i.e., benthic community survey) to develop a weight-of-evidence approach and draws conclusions based upon separate lines of evidence (Suter, 1993). According to the USEPA (1992), the SQT provides a comprehensive approach to in-place sediment control because it allows for an assessment of potential interactions between chemicals and the environment, and includes the potential toxic effects of both measured and unmeasured chemicals.

Several lines of evidence were evaluated for the near-Site areas of the Hudson River. The data collected to evaluate these lines of evidence include measures of COPC metals in bulk sediment, pore water, and biota, calculation of ESB based on SEM, AVS and organic carbon in sediments, comparisons of pore water concentrations of COPCs against NYSDEC and USEPA water quality criteria, assessment of survival, growth, and reproduction from 28-day sediment toxicity tests with L. plumulosus, and evaluation of observed benthic macroinvertebrate community characteristics. Collectively, information from these studies provides a diverse dataset to evaluate multiple lines of evidence and identify potential biological impacts related to sediment-

Sediment Remedial Investigation Report

Former General Motors Assembly Plant Site Sleepy Hollow, New York

associated COPCs. Each line of evidence contributing to this weight-of-evidence evaluation is summarized in Table 20 and described in the following sections.

8.7.1 Line of Evidence No. 1 - Sediment Chemistry

Near-Site surficial bulk sediment COPC concentrations exceed some BSLs (Section 8.2) and, as shown on Table 20, some COPCs exceed the Effects Range Median (ERM) guidance values for saltwater sediments listed in NYSDEC 1999. However, USEPA's ESB Guidance, makes clear that concentrations of total metals in bulk sediment are poor indicators of sediment toxicity (USEPA, 2005b). To address this issue the ESB guidance provides methods based on concentrations of SEM, AVS, and TOC, and direct measure of sediment pore water to evaluate the potential toxicity of metals in sediments. Based on the ESB guidance, measures of (SEM-AVS)/f_{oc} below <130 µmoles/goc are considered non toxic. Toxicity is considered uncertain in the, >130 µmoles/goc and <3,000 µmoles/goc, and likely (predicted toxic) for >3,000 µmoles/goc (USEPA 2005a).

As described in Section 8.3, all but one of the near-Site samples were below 130 μ moles/goc predicting no metal related toxicity. The single sample that exceeded an (SEM-AVS)/f_{oc} of 130 μ moles/goc (SED 126) was below the <3,000 μ moles/goc threshold and the potential for metal toxicity is thus considered uncertain for this sample. SED 126 is immediately adjacent to OF-1 and exhibited the maximum observed chromium, lead and zinc concentrations in the near-Site study area. None of the stations fall into the "predicted-toxic" category. Overall, the ESB results indicate very low bioavailability and potential for toxicity throughout the near-Site area. Based on the ESB Guidance, uncertainty associated with metal toxicity at SED 126 can be resolved using independent site-specific lines of evidence as discussed below.

These data indicate that, with the possible exception of SED126, elevated concentrations of COPCs measured in bulk sediments are sequestered in the solid phase and thus not biologically available of toxic. The concentrations of COPC in pore water data provide an independent line of evidence for evaluating for metal sequestration and potential toxicity in near-Site sediments.

All COPC pore water concentrations were below New York State freshwater criteria, as described in Section 8.3. For lead, one near-Site sample (SED134) exceeds the New York State and USEPA saltwater criteria. None of the samples exceed the saltwater criteria for chromium, mercury, and zinc. All of the near-Site and background samples

Sediment Remedial Investigation Report

Former General Motors Assembly Plant Site Sleepy Hollow, New York

exceed the saltwater criteria for copper, suggesting a regional rather than Site-related condition.

Collectively, the ESB and pore water chemistry data for the entire near-Site area, with the possible exception of the immediate vicinity of OF-1, indicate very low bioavailability and potential for toxicity based on measures of (SEM-AVS)/ f_{oc} in sediments and COPCs in sediment pore water.

8.7.2 Line of Evidence No. 2 - Bioaccumulation Data

The accumulation of metals in bivalve tissue provides an additional Site-specific line of evidence for the evaluation of COPC bioavailability and potential for toxicity. Specifically, the bivalve tissue data is used to assess whether COPCs in sediment have bioaccumulated in a representative benthic organism to levels in excess of levels observed in the same organisms at background locations. Bivalves are a useful organism for evaluating accumulation because they are relatively sessile, and they reside within the sediment matrix.

As described in Section 8.6, the bivalve tissue results from the near-Site stations are comparable to the concentrations detected in bivalves from background (reference) stations. These results indicate that there is no increase in COPC bioaccumulation in bivalves from near-Site stations vs. background stations. This finding is consistent with the results of the ESB studies and pore water data that indicated low bioavailability of COPCs in the study area sediments.

8.7.3 Line of Evidence No. 3 - Sediment Toxicity

The results of the 28-day tests with L. plumulosus were evaluated as a direct measure of potential toxicity to sediment organisms. Based on the ESB results, SED126, which was collected immediately adjacent to OF-1, was the only location which fell in the uncertain range and thus could not clearly be classified as non-toxic. Results of the L. plumulosus bioassays (Section 8.4 and Figures 17-20) clearly demonstrate no evidence of sediment toxicity at SED126 relative to both laboratory controls and background samples.

As for the remainder of the samples, the only potential effect in the near-Site sediment samples, based on a comparison of the background tolerance limit excluding the outlier sample, was slightly reduced survival in three samples (SED132, SED133, and SED136). The survival in these three samples was 75.6%, 68.5%, and 70.0%,

Sediment Remedial Investigation Report

Former General Motors Assembly Plant Site Sleepy Hollow, New York

respectively, and was higher than the lowest background survival. Two background samples (SED107 and SED109) also had survival below the tolerance limit. None of the samples had survival below the tolerance limit based on all background data. Similarly, there was no effect on growth and reproduction for any near-Site samples.

The results from the toxicity tests indicate that the possible moderately elevated toxicity of surficial sediment at a few locations in the near-Site area is consistent with background samples. Moreover, the lack of correlation with ESB results (e.g. SED126) indicate that these variations in toxicity cannot be attributed to Site-related COPCs.

8.7.4 Line of Evidence No. 4 - Benthic Community Indices

Benthic macroinvertebrate community data directly measure whether sediment COPC concentrations have affected the populations of resident organisms. An advantage of using the benthic macroinvertebrate community assessments to determine sediment quality is that it provides an accurate indication of the health of the system, and it is based on direct observation rather than theoretically derived data (USEPA, 1992).

As described in Section 8.5, the benthic macroinvertebrate data indicate a large degree of variability in the number and types of organisms present. The benthic metric values calculated from the near-Site locations are generally similar to the values calculated from the background (reference) locations. These data indicate that, based on direct observation, population-level impairment to the benthic macroinvertebrate community is not occurring.

8.7.5 Weight of Evidence Summary

The above summaries of lines of evidence indicate that elevated concentrations of COPCs in bulk sediments at near-Site locations are not bioavailable or toxic to benthic organisms. A summary of the weight-of-evidence approach is presented in Table 20. The table is set up consistent with USEPA (1992) Sediment Classification Methods Compendium.

The evidence provided in Table 20, classified in terms of "+ and "-" progresses left-toright from generic screening level comparisons, through predictive site-specific indicators of toxicity and bioavailability, and concludes with direct benthic community observations relative to background. In summary, bulk sediment chemistry data indicate that COPCs are present at levels above BSLs (most frequently for lead) and/or above sediment ERM values at some near-Site locations (most frequently for mercury),

Sediment Remedial Investigation Report

Former General Motors Assembly Plant Site Sleepy Hollow, New York

and these exceedance metrics are generally not co-related. COPCs in pore water suggest regional background exposure of benthic organisms to copper above water quality criteria, as well as exposure to lead above water quality criteria at only one near-Site station (SED 134), which did not exhibit elevated lead in the corresponding bulk sediment sample.

A site-specific ESB value indicating "uncertain toxicity" was observed in only one station (SED-126). However, other lines of evidence for SED-126 demonstrate: 1) no increase in COPC bioaccumulation in resident bivalves: 2) no evidence of increased toxicity in L. plumulosus bioassays: 2) no evidence of negative impact to the near-Site benthic community. For the three samples with slightly reduced percent survival relative to background from the toxicity tests (SED132, SED133, and SED136), toxicity from Site COPCs was not predicted by the ESB methods and may be attributable to other localized conditions. Moreover there is no evidence of impact to the benthic community at these sites.

In summary, no COPC concentration thresholds were associated with adverse biological impacts within the study area and there were no corresponding adverse effects associated with COPCs. Overall, multiple lines of site-specific evidence support the conclusion that benthic biota in the near-Site area are not impacted by COPC levels relative to background.

Sediment Remedial Investigation Report

Former General Motors Assembly Plant Site Sleepy Hollow, New York

9. Evaluation of Phase II Subsurface Sediment Data

This section describes the results of the sub-surface sediment sampling that was conducted as part of the Phase II investigation. The subsurface sediment core data reflect conditions beneath the biologically active zone (0-6 inches). As such, deep sediment chemistry data are not evaluated with respect to potential impact to benthic biota. Rather, the subsurface data are indicative of the depositional history of COPCs.

Sediment cores were collected to provide representative profiles of COPC concentrations in deeper sediment. Sediment cores were collected from three general areas: 3 cores from the background area; 6 cores from the near-Site area; and 13 cores from the immediate area of OF-1 (Figures 4 and 5). The overall core depths reached a maximum depth of 10-feet below the sediment bed surface, less refusal or lack of sediment recovery. All cores from this area-wide series were sectioned into 1-foot intervals.

As described in the following sections, the sediment cores provided data for sediment chemistry, physical characterization, geochronology, and geotechnical characteristics.

9.1 Subsurface Sediment Chemistry Data

The COPC and TOC data for subsurface sediment are presented in Table 21 (background), Table 22 (near-Site), and Table 23 (vicinity of OF-1).

9.1.1 Background Data

Subsurface sediment samples were analyzed for COPC concentrations from three background area sediment cores: SED102, SED103, and SED104 (Figure 4). Chromium, copper, lead, and zinc were detected in all background cores (Table 21). Mercury was detected in cores SED103 and SED104. COPC concentrations ranged from 23.6 to 31.9 mg/kg for chromium, 11.8 to 58.0 mg/kg for copper, 7.8 to 70.1 mg/kg for lead, non-detect to 0.37 mg/kg for mercury, and 63.7 to 171.0 mg/kg for zinc.

Figure 29 presents the COPC concentration profiles for the background deep sediment cores by each COPC. In general the background cores have consistent subsurface concentration profiles over the sample depths, with two exceptions. The 0-1foot section of SED103 exhibited slightly higher concentration compared to that of subsequent depths. At location SED104, the COPC concentrations in the top two feet were much higher than concentrations observed at deeper intervals. The results of geochronology

Sediment Remedial Investigation Report

Former General Motors Assembly Plant Site Sleepy Hollow, New York

analysis (Appendix D), as summarized in Section 9.2, suggests that the deposition rate at SED104 is more than twice that observed at SED103.

9.1.2 Near-Site Area Data

Subsurface sediment samples were analyzed for COPC concentrations from six nearsite sediment cores: SED119, SED123, SED126, SED127, SED128, and SED138 (Figure 5). As shown in Table 22, COPCs were detected in all near-site core locations. COPC concentrations ranged from 11.3 to 257 mg/kg for chromium, 8 to 265 mg/kg for copper, non-detect to 1,530 mg/kg for lead, non-detect to 8.8 mg/kg for mercury, and 38.2 to 3,030 mg/kg for zinc.

Figure 30 presents the COPC concentration profiles for the near-Site deep sediment cores by each COPC constituent. In general the near-Site cores have variable subsurface concentration profiles over the sample depths, presumably reflecting differences in depositional history among the sampled locations. The profile patterns for near-site cores are discussed in three profile subgroups: a) SED119 and SED138; b) SED 123, SED127 SED128; and c) SED 126 based on their COPC profiles.

Group a) - Both SED119 and SED138 cores have relatively flat concentration profiles for all COPCs. The SED119 profile exhibits overall lower COPC concentrations than the background cores. SED119 is located within 500 feet of the Site near OF-2 and within the Tarrytown Harbor navigation channel footprint (Figure 5). As a result, sediment recovered at this location is below the depth of channel dredging activities. The surface elevation of core SED119 is at an elevation of 19.5 feet below mean sea level (MSL) which is deeper than the bottom of maintained channel elevation of 12 ft below MSL (-12ft elevation). SED138 is located nearly 4,000 feet downstream of the Site and nearly 1,000 feet offshore of the harbor navigation channel. Subsurface COPC concentrations at SED138 are slightly lower, in general, than near-Site cores SED123, SED127, and SED128 (Figure 30)

Group b) - SED123, SED127 and SED128 are located within 50 feet offshore of the harbor navigation channel, with SED128 closest to OF-1 (Figurer 5). Profiles for lead and zinc in all three cores exhibit similar profiles in terms of maintaining a narrow range of surface concentrations for at least 3-feet before a concentration decrease is noted. Lead and zinc concentration in SED 128 peak at the 3 to 4-foot interval and decrease deeper with depth below 4 feet. At SED123, peak levels of lead and zinc are reached at the 5 to 6-foot interval (Figure 30) before decreasing with increasing depth. In contrast, SED127 maintains similar concentrations of lead and zinc throughout the 10-

Sediment Remedial Investigation Report

Former General Motors Assembly Plant Site Sleepy Hollow, New York

foot profile. Chromium profiles are a little more variable when compared to lead and zinc in these cores, but the observed concentration changes with depth correspond to those noted for lead and zinc. Copper and mercury profiles are the most variable, with concentrations increasing with depth until at least 3 feet below the surface, although their concentrations profiles appear to vary independent of chromium, lead and zinc (Figure 30).

Group c) – This subgroup consists of SED126, located at the mouth of OF-1. This core yielded only 16 inches of sediment recovery due to the limited depth of sediment on top of the rock rip-rap in that area. Therefore, no depth profile could be developed below the single 0-1 foot sample shown on Figure 30. However, vertical concentration profiles for 13 cores taken from a sampling grid surrounding SED126, as described in Section 9.1.3, provide greater detail regarding vertical COPC distribution near OF-1.

9.1.3 OF-1 Data

Thirteen cores (SED140, SED141, SED142, SED143, SED144, SED145, SED146, SED149, SED151, SED152, SED153, SED154, and SED155) were collected in the very near vicinity of OF-1 (Figure 5) and sectioned into 2-foot intervals. As shown in Table 23, COPCs were detected in all OF-1 area core locations at concentrations ranging from 10.8 to 1,960 mg/kg for chromium, 5.4 to 177 mg/kg for copper, 6.1 to 8,420 mg/kg for lead, non-detect to 3.5 mg/kg for mercury, and 31.2 to 14,500 mg/kg for zinc.

Figure 31 presents the verical concentration profiles for the OF-1 grid cores by each COPC constituent, relative to depth below the river bottom. In general, the OF-1 cores have variable subsurface concentration profiles over the sample depths. As shown in Figure 31, the concentrations within the top foot are within the same order of magnitude (copper and mercury) or within two orders of magnitude (chromium, lead and zinc). As the depths increase, the range of concentration variation increases. COPC concentrations of chromium, lead and zinc, in cores from SED141, SED143, SED146, and SED152 show a general pattern of concentration decrease with depth below the 0-1 foot interval or exhibit a peak in concentration at the 3-foot depth interval before a decline is observed. Four cores further offshore along the edge of the navigation channel (SED142, SED145, SED151, and SED153) tend to exhibit their peak concentrations at the 5-7 foot depth intervals. Copper and mercury, which exhibit less resemblance to the chromium lead and zinc profiles, also tend to peak within 0-3 feet near OF-1 and within 5-7 feet along the edge of the navigation channel.

Sediment Remedial Investigation Report

Former General Motors Assembly Plant Site Sleepy Hollow, New York

The river bottom slopes from the shoreline at Of-1 at an elevation of -4ft MSL (4 feet below mean sea level) to the bottom of the harbor navigation channel from at -12ft MSL. To examine COPCs by elevation, representative concentration profiles of COPC concentrations vs. elevation (relative to MSL) are illustrated on Figures 32 and 33. These figures display COPC data from cross sections A-A' and B-B' (Figure 5). The peak concentrations appear to follow a steeper slope than the present river bottom bathymetry. Concentration profiles from cross section A-A' (Figure 32), close to the shoreline, indicate that most peak concentrations of chromium, lead and zinc, are typically reached between elevation -9 to -12 ft MSL (9 to 12 feet below MSL). The river bottom along cross section A-A' is at an approximate elevation of -6 to -9 ft MSL. Concentration profiles from cross section B-B' (Figure 33), further from shoreline along the edge of the navigation channel, indicate that peak concentrations of chromium, lead and zinc are reached at -14 to -16 ft MSL or lower (below the deepest sample). The river bottom along cross section B-B' is at an approximate elevation of -9 to -10 ft MSL. In contrast to cross section A-A', the peak concentrations along cross-section B-B' reside beneath approximately 3 to 4 feet of relatively cleaner sediments as shown in Figure 33 A similar cleaner surface layer is diminished or non-existent closer to the shoreline near OF-1 (Figure 32). It is noteworthy that the biologically based assessment samples at OF-1 (SED126), as presented in Section 8, were collected from the near-shore area where a relatively clean surface layer is absent.

9.2 Subsurface Sediment Geochronology Data

In this study (provided in Appendix D), radiological activities of naturally occurring isotopes beryllium-7, cesium-137, and lead-210 were analyzed to assess the age (when specific sediment strata were deposited) and dynamics (sedimentation rate) throughout the sampled sediment horizon. Beryllium-7 has a very short half-life (approximately 53 days) and is useful for measuring sediment transport on less than an annual time scale. Cesium-137 is a thermonuclear byproduct with a half-life of 30.3 years, and its presence is directly related to the atmospheric testing of nuclear devices that began in the mid- to late-1950s and peaked in 1963. The cesium-137 horizon (first occurrence) and peak activities are used to mark these time periods and calculate average sediment deposition rates during and subsequent to those years. Lead-210 is a naturally occurring radioactive isotope with a half-life of 22.8 years. In theory, lead-210 activities are highest at the surface of sediment where it is affected continuously by deposition, and decreases with sediment depth due to constant decay. Lead-210 was used to delineate the approximate mixing depth of sediment and to date the individual sediment strata at depth.

Sediment Remedial Investigation Report

Former General Motors Assembly Plant Site Sleepy Hollow, New York

The radiochemical data of sediment samples are presented in Table 26 (near-Site) and Table 27 (background). Sedimentary properties of each core and chronology data interpretation are summarized in the table below.

Sediment Core ID	Pb-210 Chronology Mixing Depth (inch)	Cs-137 Chronology Horizon (inch)	Cs-137 Chronology 1963 Marker (inch)	Preferred Sedimentation Rate (inches/year)		
Background						
SED103	2	3 to 5	Not defined	0.08±0.02		
SED104	8	9 to 11	5 to 9	0.19±0.02		
Near-Site						
SED123	6	7 to 9	Not defined	0.15±0.02		
SED126 (OF-1)	No trend defined (short core with approx. 12 inch recovery)	> 11	Not defined	> 0.21		
SED128	50 to 60	42 to 50	34 to 50	0.88±0.08		
SED138	6	1 to 3	Not defined	0.04±0.02		

Beryllium-7 was not detected in any of the sediment increments. Because of its short half-life of 53 days, beryllium-7 is only detectable within the last half year. Therefore, the sediment chronology interpretation is based on the results for lead-210 and cesium-137.

Sedimentation rates in near-Site cores ranged from 0.04 to 0.88 inches per year. SED128 (south of OF-1) exhibited the highest sedimentation rate (0.88 inches per year) and mixing depth (50 to 60 inches). The sedimentation rate of core SED123 appeared to be similar to background core SED104, but with a higher degree of mixing activities (i.e., relatively flat isotope profile within the mixing zone) and absent of the 1963 cesium-137 marker. Core SED138 had the lowest sedimentation rate (0.04 inches per year) and shallow mixing depth (6 inches). Core SED126 was collected at the mouth of OF-1, and reached refusal (rock) at approximately 16 inches. The sediment chronology data from SED126 suggest a depositional condition. Visual observations indicate that this core contained fine to coarse sand with some silt, over fine to coarse gravel and rock fragments.

The sedimentation rates for background cores SED103 and SED104 are 0.08 and 0.19 inches per year, respectively. Core SED104 had a distinct 1963 cesium-137 marker between 5 to 9 inches. In comparison, core SED104 had a higher degree of

Sediment Remedial Investigation Report

Former General Motors Assembly Plant Site Sleepy Hollow, New York

depositional characteristic than core SED103. The sedimentation rate and mixing depth at SED128, located near a turn in the Tarrytown Harbor channel, is significantly greater than the other locations analyzed in near-Site and background areas.

As noted in Section 9.1.2 and displayed on Figure 30, variations in COPC concentrations are noted in cores adjacent to the harbor navigation channel, including SED123 and SED128. The d30, variations in COPC concentrations are noted in cores adjacent to the harbor navigation channel, including SED123 and SED128. The deep 50-60 inch mixing depth, and 1963 marker at the 3-4 foot interval in SED128, corresponds to the zone of peak COPC concentrations within the 3-4 foot depth, which may indicate a decline in COPC concentrations with recent deposition since the early 1960s. This apparent trend in COPC deposition does not carry over to SED123, which shows only a 6-inch mixing depth and the 1963 marker between 5 to 7 inches. Corresponding COPC levels in SED123 peak at intervals much deeper (up to 6 feet) than the 1963 marker. However, a slight decline in COPC levels is apparent in the 0-1 foot interval compared to the 1-2 foot interval.

9.3 Sediment Grain Size and Geotechnical Characteristics

9.3.1 Surface Sediment Grain Size Data

Grain size analysis was performed on all surface sediment samples collected in near-Site area (Table 24) and background area (Table 25). Silt and clay were dominant in the majority of the sediment samples except locations SED100, SED101, SED113, SED117, SED118, SED126, and SED135 where sand was prevalent.

9.3.2 Subsurface Sediment Geotechnical Data

Representative laboratory samples were taken from sediment samples SED147, SED149 and SED150 from the surface to a depth of 8 feet. The material was generally black to dark gray organic silt with sand. The sediment becomes coarser with depth terminating in a coarse to fine sand with little silt.

Geotechnical laboratory tests included particle size analysis, moisture content, Atterberg Limits, bulk density, specific gravity and consolidation testing. The test results are summarized in Table 28, Geotechnical testing data.

Former General Motors Assembly Plant Site Sleepy Hollow, New York

Limited gravel was detected in the samples, partially controlled by the sampling method. The total percentage of sand ranged from 1 to 82%. The amount of silt and clay ranged from 13 to 67% and 5 to 38%, respectively.

The moisture content in the recovered samples varied from 18 to 140%. The low end of the scale were coarser sand samples that may be affected by the sampling method, but all the samples are submerged and are assumed saturated.

The liquid and plastic limits (Atterberg) show that the plastic cohesive soils extend to approximately 6 feet in depth and are generally classified as moderate to highly plastic organic silt. The 6 to 8 foot sample was non-plastic silty sand.

The bulk density was in a fairly narrow range for the 0 to 6 feet interval of 84 to 95 pounds per cubic foot (pcf) while the 6 to 8 feet interval was 134 pcf, as can be expected from the coarser sand. The unitless specific gravity values range from 2.461 to 2.702 and average approximately 2.58.

The two consolidation tests were run on the sample intervals of 2 to 4 feet and 4 to 6 feet of sample SED149. The Compression Index (Cc) was approximately 0.6 for both samples. The Cc value gives the relative amount of consolidation or settlement that can be expected from loading of the sediment. The Coefficient of Consolidation (Cv) represents the relative time for consolidation to occur under load. The value of Cv varied under load, but in general ranged from 0.01 to 0.62 inches² per minute. Review of typical values for compressible soils shows that these organic silty sediments can be expected to significantly consolidate under load and consolidation will occur rather quickly. Specifics values of time and amount of consolidation will depend on the amount of load applied, the time to apply the load, the amount of load removed prior to loading (i.e., excavation) and the overall thickness of the compressible soil layer

Sediment Remedial Investigation Report

Former General Motors Assembly Plant Site Sleepy Hollow, New York

10. Qualitative Human Health Exposure Assessment

10.1 Introduction

This section presents a Qualitative Human Health Exposure Assessment (QHHEA) that describes the potential for human health exposure to site-related (COPCs) in Hudson River sediments adjacent to the Site. The QHHEA was conducted following New York State Department of Health (NYSDOH) Quantitative Human Health Exposure Assessment guidance as presented in the NYSDEC (2002) Technical Guidance for Site Investigation and Remediation. A QHHEA was previously conducted for the upland portion of the Site and is presented in the December 2006 RI Report for the Site (BBL, 2006). The assessment for Hudson River sediments uses information regarding foreseeable future uses for the shoreline and near-shore portions of the Site, as well as available sediment data, to evaluate potential exposure to human receptors. The QHHEA characterizes the environmental setting of the Site and identifies COPCs, future receptors, and potentially complete exposure pathways.

10.2 Environmental Setting

The Site is located along the eastern shore of the Hudson River, in the Village of Sleepy Hollow, New York (Figure 1A). The upland portion of the Site currently consists of three, non-contiguous portions totaling approximately 96.2 acres. The former main assembly plant area (West Parcel) contains 66.2 acres, the eastern parking lot (East Parcel) contains 28.3 acres, and the salaried employee parking lot (South Parcel) contains 1.7 acres (Figure 1B). The former main assembly plant area and the eastern parking lot are separated by an active railroad corridor owned by Metro-North/Conrail. The former salaried employee parking lot is located across Beekman Avenue, directly south of the main assembly plant property. This lot is bordered by Beekman Avenue, Hudson Street, River Street, and property owned by the Village of Sleepy Hollow.

The off-site portion of the Site comprises a portion of the Hudson River and shoreline adjacent to the Site. The off-site portion of the Site is bounded to the west by the federal navigation channel and extends upriver just beyond river mile 28 and downriver to just below river mile 26.

The contemplated future use of the Site is mixed commercial and restricted residential development, with public open space, including public access to the waterfront and municipal public works operations. On June 7, 2011 the Village of Sleepy Hollow adopted a resolution granting a Special Permit and Approving the Riverfront

Sediment Remedial Investigation Report

Former General Motors Assembly Plant Site Sleepy Hollow, New York

Development Concept Plan for the Lighthouse Landing Riverfront Development, as shown on Figure 1D. Future land uses of Kingsland Point Park to the north and the managed residential, commercial and waterfront park properties to the south are not expected to change significantly in the future with regard to anticipated human access to the Hudson River sediments. The entire Hudson River shoreline within the bounds of the off-shore area of the Site is comprised of seawall or rip-rap with the exception of a small beach located between the northern boundary of the Site and the southern boundary of Kingsland Point Park and a more extensive beach area located along the northern shoreline of Kingsland Point Park. Key post-development features along the waterfront portion of the Site will include a fishing pier, a floating dock (dock and dine), an existing lighthouse, and a second floating dock for launching small craft. The existing lighthouse (Tarrytown Lighthouse) is listed on the National Register of Historic Places and is currently accessible to the public through Kingsland Point Park.

The qualitative human health exposure assessment presented herein evaluates potential exposure of human receptors to site-related constituents in sediments under future land use conditions. The medium of concern is near-shore Hudson River sediment along the waterfront portion of the Site, Kingsland Point Park, and the commercial/industrial areas to the south.

10.3 Constituents of Potential Concern

GMC has conducted three sediment investigations (1997, 2004, and 2006) to evaluate the nature and extent of site-related chemicals in Hudson River sediments. Based on data from all three studies, five COPCs were identified for offshore sediments. They are chromium, copper, lead, nickel, and zinc.

10.4 Potential Receptors, Exposure Points, and Exposure Pathways

The entire length of Hudson River shoreline within the bounds of the offshore portion of the Site will consist of seawall or rip-rap as well as two areas comprising beach. The beach areas include the northern shoreline of Kingsland Point Park and a smaller beach located between the northern edge of the Site and the southern edge of Kingsland Point Park. The remaining portions of shoreline bordering Kingsland Point Park and the Site will consist of seawall with walking paths. The shoreline bordering the existing managed residential, commercial and waterfront park areas south of the Site will remain a mix of seawall and rip-rap.

Former General Motors Assembly Plant Site Sleepy Hollow, New York

An initial step in evaluating potential human exposure is identifying complete exposure pathways. In accordance with NYSDOH guidance for conducting a QHHEA (NYSDEC, 2002), and consistent with USEPA risk assessment guidance (1989), for an exposure pathway to be complete, the following five elements must exist:

- 1) a source of COPC;
- 2) release and transport mechanisms of COPC;
- 3) a point of human exposure;
- 4) routes of exposure where constituents from these media could be taken up by the human body; and
- 5) a receptor population.

An exposure pathway is complete if all five elements exist. If any element is not present, then no further evaluation is necessary (USEPA, 1989; NYSDEC, 2002).

10.4.1 Sources and Transport Mechanisms

As previously described in Sections 6 and 8, COPCs have been identified in nearshore sediments of the Hudson River. COPCs (i.e., metals) that are potentially derived from the Site would have entered the River prior to 1971 in industrial wastewater discharges as dissolved and suspended solids. Natural patterns of sediment deposition from local and upstream sources, sediment transport along the river bottom, local dredging of navigation channels, and waterfront development before and since 1971 would have contributed to the recently observed sediment conditions.

10.4.2 Receptors

Potential human receptors that may frequent the shoreline portions of the Site and adjacent properties include:

- Adult and child recreators; and
- Workers involved in beach or seawall maintenance.

Under the anticipated future land use, most of the shoreline will be accessible to the general public. Likely recreational activities include use of the beaches for walking, wading, fishing; use of the boat launches for fishing and launching of boats; use of the

Sediment Remedial Investigation Report

Former General Motors Assembly Plant Site Sleepy Hollow, New York

walkways on the seawalls for walking, running, and similar recreational activities; and visiting the Tarrytown Lighthouse. Workers may be involved in maintenance of beaches and seawalls.

10.4.3 Exposure Points

Recreators may contact nearshore sediments during recreational activities and workers may contact sediments during maintenance activities at the beaches or on seawalls. Therefore, exposure points are near-shore Hudson River sediments.

Hudson River surface water is considered a negligible exposure medium because metals are primarily bound to the sediment matrix, and any metals partitioning from sediments to the water phase would rapidly attenuate with the relatively fast currents. Fish and shellfish are also considered negligible exposure medium because metals are not considered bioaccumulative chemicals and anglers would generally fish from a much broader area of the Hudson River, not just in the nearshore area of the Site. Air is considered a negligible exposure medium because metals are not volatile. While Hudson River sediment in the nearshore area is considered the exposure point of interest, potential exposure to recreators and workers would be limited to areas with direct access to near-shore sediments (e.g., the two beach areas and the boat launch). Sediments adjacent to the seawall are not considered exposure points because there is no direct access to these sediments by recreators. While workers could have contact with sediments along the seawalls, such contact is expected to be minimal and infrequent.

It is important to note that the larger of the two beaches, the beach area along the northern portion of Kingsland Point Park, is located a substantial distance upstream from the Site and is within the portion of the River identified as background for the purposes of evaluating COPCs in this RI. In a recent study on swimming in the Hudson River, the northern beach area at Kingsland Point Park was identified as one of five beaches on the Hudson River that was considered feasible as a "swimming beach" without any further action other than beach and facility improvements (NYSDEC, 2005). The minor beach at the southern end of Kingsland Point Park is likely to be integrated into a new on-Site hardscape feature under the future Site development, to function as a boat launch area for small hand-carried craft.

Former General Motors Assembly Plant Site Sleepy Hollow, New York

10.4.4 Exposure Pathways Evaluation

The exposure pathways evaluation integrates information on COPC sources, transport mechanisms, exposure points, and the characteristics (e.g., behaviors) of human receptors to determine with a potential exposure pathway is complete, incomplete, or insignificant. Three exposure routes are considered. These are ingestion, dermal contact, and inhalation. As discussed in Section 10.4.3, air is not considered an exposure point because metals are not volatile. Therefore, the inhalation exposure pathway is considered an incomplete exposure pathway. However, both recreators and workers may have direct contact to nearshore sediments in the vicinity of the beaches and boat launch. Therefore, incidental sediment ingestion and dermal contact with sediments are potentially complete exposure pathways. Neither of these potential exposure pathways are considered significant however, since the frequency and duration of exposure to both recreators and workers is expected to be minimal.

Sediment Remedial Investigation Report

Former General Motors Assembly Plant Site Sleepy Hollow, New York

11. Fish and Wildlife Resource Impact Assessment

This section of the RI presents a qualitative fish and wildlife exposure assessment for the Hudson River in the vicinity of the Site. The near-Site area of the Hudson River included in this assessment is shown on Figure 5. Non-riverine areas of the Site were evaluated as part of the on-Site RI and are not evaluated in this document.

The objectives of this qualitative assessment are to identify the fish and wildlife resources that exist in the vicinity of the Site, and to evaluate the potential for exposure of these resources to Site-related constituents in environmental media.

This qualitative assessment for fish and wildlife resources was conducted in accordance with NYSDEC (2004) guidance for the BCP. Per the BCP requirements, this qualitative assessment is equivalent to Steps I and IIA of NYSDEC's Fish and Wildlife Resource Impact Analysis (FWRIA) outlined in DER-10 (NYSDEC, 2002a). As an initial part of the FWRIA, Step I characterizes terrestrial and aquatic ecologies of the Site and surrounding areas, and develops a list of potential ecological receptors. The specific components of Step I are as follows: Step IA) Site description and maps; Step IB) description of fish and wildlife resources; Step IC) description of fish and wildlife resource value; and Step ID) identification of applicable fish and wildlife regulatory criteria. Step IIA involves a pathway analysis, which utilizes the receptor information generated in Step I to evaluate potential exposure pathways based on Site ecology and the location of Site-related constituents.

This qualitative fish and wildlife exposure assessment is based (in part) on information from the ecological resource assessment conducted for the Site by EcolSciences (2005) entitled Assessment of Ecological Resources for Lighthouse Landing Redevelopment Project, Village of Sleepy Hollow, Westchester County, New York), and field observations from the 2006 sediment investigation.

11.1 Site Description

The Hudson River is a relatively large river, and the basin encompasses about 13,300 square miles in eastern New York and parts of Vermont, New Jersey, Massachusetts, and Connecticut (Wall et al., 1998). Nearly all of the urban and industrial centers in the basin are concentrated along the Hudson River (Wall et al., 1998). In the vicinity of the Site, the Hudson River shoreline has been modified by historical land use. Almost the entire shoreline is constructed of rip-rap or (in the vicinity of the marinas) bulkhead. The historic Tarrytown Lighthouse is located along the upstream portion of the

Sediment Remedial Investigation Report

Former General Motors Assembly Plant Site Sleepy Hollow, New York

shoreline (Figure 1C), and the shoreline around the lighthouse is also constructed of rip-rap.

The Hudson River in the vicinity of the Site is tidally influenced, and current fluctuates upstream or downstream depending on the tide. The Hudson River adjacent to the Site is characterized as mesohaline (Versar, 2003). Mesohaline typically has a salinity of 5 to 18 practical salinity units (psu) (Versar, 2003). During periods of high water such as spring floods, freshwater conditions occur in the vicinity of the Site. As the flow of freshwater declines through the summer, the salt front (i.e., 100 ppm) gradually moves upriver. Water depth in the vicinity of the Site drops off relatively quickly from shore, to a maximum depth of approximately 45 feet in the vicinity of the main shipping channel.

The lower Hudson River reflects a long history of human use, and water quality is impacted by point and non-point sources within the watershed. There are many industrial and municipal discharges, and a majority of water quality impairment for the Hudson River is derived from stormwater runoff (NYSDEC, 2007). Historical contaminants present throughout the Hudson River, and attributable to various sources, include PAHs, pesticides, PCBs, and metals.

The substrate within the near-Site area is hard-bottom rip-rap adjacent to the shoreline, with a predominance of silt and clay further away from the shoreline. Areas that are subject to swifter currents (i.e., downstream of the Tarrytown Lighthouse) have rocky hard bottom with some oyster shells.

11.2 Ecological Characterization

The NYSDEC best usage classification for this stretch of the Hudson is Class SB. According to New York Regulations Title 6 §701.11, the best usages of Class SB streams are primary and secondary contact recreation and fishing. Class SB waters are suitable for fish propagation and survival.

11.3 Fish and Wildlife Resources

The fish and wildlife resources of the Hudson River in the near-Site vicinity are limited, to some extent, by the urban nature of the surrounding land use and the lack of suitable shoreline habitat.

The survey that was conducted as part of the 2006 sediment investigation provides information regarding the benthic community of the Hudson River. The survey results

Sediment Remedial Investigation Report

Former General Motors Assembly Plant Site Sleepy Hollow, New York

(described in Section 8.5) indicate a large degree of variability in the number and types of organisms that are present. The organisms that were identified in the grab samples include marine species such as the Eastern oyster (Crassostrea virginica) and the ribbed mussel (Geukensia demissa), and freshwater species such as midges (e.g., Clinotanypus sp.). Total organism counts ranged from a total of 3 per grab to almost 1,000 organisms. In general, the variability within the data indicates a spotty distribution of the benthic community that varies widely throughout the river bottom

More than 150 species of fish are known to occur within the tidal portion of the Hudson River (Smith, 1985). These species include freshwater and marine species, and migratory species. Fish species known to inhabit tidal sections of the Hudson include alewife (Alosa pseudoharengus), American eel (Anguilla rostrata), gizzard shad (Dorosoma cepedianum), and striped bass (Morone saxatilis).

Wildlife that is expected to occur within the near-Site area of the Hudson River is limited to various species of water birds, including ducks, geese, and gulls.

11.3.1 Threatened/Endangered Species and Significant Habitat

According to the NYSDEC Natural Heritage Program (NHP), the shortnose sturgeon (Acipenser brevirostrum) (a state-endangered fish species) occurs within the lower Hudson River from the Battery in New York City at its junction with Upper New York Bay, upstream to the Federal Dam in Troy (EcolSciences, 2005). No Significant Coastal Fish and Wildlife Habitats are present onsite or within the immediate vicinity of the Site (EcolSciences, 2005).

The nearest mapped significant habitat is the Piermont Marsh located 3 to 4 miles downstream of the Site, along the western shoreline of the Hudson River in the town of Orangetown (EcolSciences, 2005). Piermont Marsh is an approximately 725-acre wetland complex of brackish marsh and intertidal shallows, and is one of the largest undeveloped wetland complexes along the lower Hudson River (EcolSciences, 2005).

11.3.2 Observations of Stress

Observations of stress pertinent to an aquatic system include fish kills or stressed aquatic vegetation. No visible evidence of stress was noted for the Site or surrounding areas in the ecological assessment (EcolSciences, 2005). Similarly, there was no evidence of stress noted during the aquatic field work that was conducted by BBL in 2006.

Sediment Remedial Investigation Report

Former General Motors Assembly Plant Site Sleepy Hollow, New York

11.4 Fish and Wildlife Resources Values

Step IC consists of an assessment of 1) the general ability of the area within 0.5-mile of the Site to support fish and wildlife resources, and 2) the value of fish and wildlife resources to humans. The following subsections provide a qualitative evaluation of the value of the identified covertypes to wildlife and the value of these wildlife resources to humans.

11.4.1 Value of Habitat to Associated Fauna

The Hudson River is inhabited by a variety of aquatic species, including fish. Anadramous fish such as striped bass and herring use the Hudson River for spawning. The Hudson River also serves as an important travel corridor for migratory birds. Although the section of the Hudson River adjacent to the Site does not have a natural shoreline (i.e., free from anthropogenic modifications and/or disturbances), this tidal river is still considered to be an important aquatic resource to aquatic, semi-aquatic, and terrestrial wildlife.

11.4.2 Value of Resources to Humans

Current human use of fish and wildlife resources associated with the Hudson River includes fishing, recreational boating, and wildlife observation. Given the post-industrial nature of the near-Site shoreline and limited shoreline access, these types of human use activities do not routinely occur in the immediate vicinity of the Site, although commercial and sport fishing by boat occurs offshore throughout the lower Hudson River. Future uses of the Hudson River along the Site waterfront are likely to increase based on the water-dependent uses included in the future Site conceptual development plans.

11.5 Pathway Analysis

The pathway analysis (equivalent to Step IIA outlined in DER-10) identifies complete or potentially complete ecological exposure pathways to Site-related constituents. According to NYSDEC (1994) guidance, if Step IIA concludes that there are no potentially complete exposure pathways, ecological impacts are considered to be minimal and no further evaluation is warranted.

The objective of the pathway analysis is to identify potential pathways by which fish and wildlife receptors may be exposed to Site constituents. A complete exposure

Sediment Remedial Investigation Report

Former General Motors Assembly Plant Site Sleepy Hollow, New York

pathway exists if there is a source, a potential point of exposure, and a viable route of exposure and receptors at the exposure point. If any one of these elements is missing, then the pathway is not considered to be complete and exposure cannot occur, irrespective of chemical concentrations in environmental media.

For the Hudson River adjacent to the Site, sediment is considered the potential medium of interest associated with the Site, and metals are the COPCs. Surface water is not considered to be a medium of interest because metals are expected to be predominantly bound to the sediment.

Potential exposure pathways associated with sediment-related COPCs are direct contact and ingestion for fish and macroinvertebrates. Wildlife (e.g., ducks, geese, gulls) are not expected to be exposed to metals via sediment because the depth of the water column would deter contact. Potential exposure to metals via bioaccumulation in the food chain is not expected, because available tissue data (described in Section 8.7.4) indicate that bioaccumulation of COPCs is not significant.

A criteria-specific analysis (Step IIB), which consists of comparing Site data to numerical criteria, would be conducted only if potentially complete exposure pathways are identified. Analyses of the sediment data, as well as an assessment of other lines of evidence (e.g., toxicity testing results, benthic community survey, biological tissue data) are presented in Section 8.

11.6 Summary and Conclusions

The near-Site area of the Hudson River is a mesohaline environment, characterized as relatively deep (generally 4 to 45 feet), with a shoreline of predominantly rip-rap. The media of interest is sediment, and the COPCs are metals. The only potentially complete ecological exposure pathways are direct contact and ingestion for fish and macroinvertebrates. The potential significance of these exposure pathways are evaluated in terms of measured bioaccumulation of COPCs and observed benthic community characteristics discussed in Section 8.

Sediment Remedial Investigation Report

Former General Motors Assembly Plant Site Sleepy Hollow, New York

12. Conclusions and Recommendations

12.1 Phase I Findings

Sediment investigations conducted by GMC in 1997 and 2004, produced screening level evaluations that identified constituents of potential concern, and prioritized areas for further evaluation. Data from a regional NYSDEC sediment study between 2000 and 2001 were included to enhance the background sediment database. NYSDEC's Technical Guidance for Screening Contaminated Sediments (NYSDEC 1999) provided a framework for this evaluation. Using that framework, a step-wise adaptation to the guidance was developed and implemented to address the unique aspects of the data distribution within this section of the Hudson River.

A focused list of COPCs for the Site was identified based on a comparison of near-Site sediment data to screening values and statistical comparisons to background concentrations. Chromium, copper, lead, mercury, and zinc were identified as COPCs for the near shore area of the Site based on elevated concentrations above background and degree of exceedance of freshwater SELs. However, with the exception of a few higher lead concentrations in the immediate vicinity of OF-1, most COPC concentrations were the same order of magnitude as the SEL. Sediment ranking techniques were used to identify locations of potential concern.

PCBs and PAHs were detected in near-Site sediment samples at levels above freshwater LELs, but no areas exhibited PCB or PAH levels above freshwater SELs, even at the mouth of Outfall OF-1.

Based on this analysis, the following conclusions are derived from the screening evaluation of the 1997-2004 data:

• The most pervasive chemical contaminants found throughout the tidal Hudson River, between Troy and Manhattan, are metals. Likewise, metals are by far the most pervasive constituent of concern observed in the sediment investigations conducted in the Site vicinity, including the background area. In addition to metals, sediments near the historically commercial/industrial waterfront in the Tarrytown Harbor area also exhibit levels of organic contaminants such as PCBs and PAHs that can be found in similar urban harbors.

Sediment Remedial Investigation Report

Former General Motors Assembly Plant Site Sleepy Hollow, New York

- Most inorganic constituents detected in both background and Site data exceeded the lower LEL screening value, and those that exceeded the higher SEL, were only marginally greater than the SEL. Overall, stations at the mouth of Outfall OF-1 exhibit the highest relative rankings for metals. In fact, with the exceptions of lead at the mouth of Outfall OF-1, inorganic COPC concentrations were generally the same order of magnitude as the SEL.
- Potential areas of concern were identified based on comparison of near-Site data to background concentrations and generic screening criteria, and the sediment ranking approach for inorganic COPCs. These rankings do not necessarily indicate areas where impairment (e.g., impacts to benthic invertebrates) has occurred, but merely indicate areas with the highest potential for ecological risks within the study area.
- PCBs and PAHs were found at levels less than SELs. The observed distribution of these constituents does not suggest any specific areas where significant adverse impacts to benthic communities from these constituents would be anticipated. The areas of potential concern prioritized by inorganic COPC ranking encompass the range of PAH and PCB concentrations in the near-Site area.

Based on the results of above evaluation and further discussions with NYSDEC, a supplement (Phase II) site-specific sediment investigation was proposed to further assess potential impacts to the Hudson River, and to determine if there is evidence of significant benthic community impairment in the near-Site areas relative to background conditions.

12.2 Phase II Findings

The 2006 SSIWP outlined a comprehensive approach to benthic impact assessment, covering a broad area of interest in the Hudson River designed to evaluate multiple lines of evidence of possible benthic impacts attributable to COPCs in sediments near the Site. The 2006 SSIWP was developed with significant input from NYSDEC, and was based on evaluation of previous investigation results and an overall goal to complete all phases of an integrated risk-based impact study.

Sediment Remedial Investigation Report

Former General Motors Assembly Plant Site Sleepy Hollow, New York

The 2006 SSIWP study design incorporated whole sediment analyses within the biologically active zone (0-6 inches) in conjunction with widely-used toxicity benchmarks, confirmatory bulk sediment toxicity tests, representative biological tissue sampling, and benthic community assessment. This risk-based approach identified sampling stations that exhibit differences in COPC concentrations relative to background, as expected based on previous investigations, and characterized the observed concentrations relative to sediment criteria. Although the Phase I findings were used for screening purposes to narrow the geographic areas of interest, the 2006 investigation applied all of the planned confirmatory impact assessment tools throughout the entire study area. These tools provided several integrated lines of evidence to evaluate bioavailability and potential toxicity of COPCs to benthic biota, and to assess community-level indicators of benthic impact relative to background.

Key findings of the Phase II sediment investigation, as they relate to an evaluation of biological impact, are summarized as follows:

- COPCs in several near-Site stations are present in the biologically active sediment zone at concentrations above BSLs and/or freshwater sediment screening criteria. However, the Site-specific ESB values, based on the (∑SEM AVS)/foc benchmark, predict an absence of toxicity attributable to the COPCs at all near-Site locations except SED126 near OF-1. Although SED126 exhibits an uncertain potential for adverse biological effects based on this ESB benchmark, other lines of evidence for SED126 demonstrate: 1) no increase in COPC bioaccumulation in resident bivalves: 2) no evidence of increased toxicity in L. plumulosus bioassays: 2) no evidence of negative impact to the near-Site benthic community. The biological investigations and toxicity testing results confirmed that the near-Site area in general, including SED126, does not exhibit toxicity or apparent benthic community impairment, relative to observed background conditions.
- Four individual near-Site sampling stations exhibit one or more COPCs in pore water at levels greater than background. However, pore water results for the near-Site area in general indicate a lack of predicted toxicity to freshwater organisms based on comparison to water quality criteria for the protection of freshwater systems. Only one near-Site station exhibited lead in pore water above marine criteria, but the corresponding marine sediment bioassay test performance was equivalent to background. In general, copper levels in pore water may predict potential impairment to marine organisms, based on comparison to marine/saltwater criteria, but this condition was observed

Sediment Remedial Investigation Report

Former General Motors Assembly Plant Site Sleepy Hollow, New York

throughout the background and study area and is unlikely to be attributable to the Site. As such, near-Site impairment to benthic organisms relative to background is generally not predicted by the pore water data. This prediction is supported by the toxicity test results, which indicated that the near-Site and background sediments exhibited mostly equivalent effects on test organisms.

- The bivalve tissue results indicate that there is no increase in COPC bioaccumulation in bivalves from near-Site stations vs. background stations. This finding is consistent with the results of the ESB studies and pore water data that indicated low bioavailability of COPCs in the study area sediments.
- The results from the toxicity tests indicate that the possible moderately elevated toxicity of surficial sediment at a few locations in the near-Site area is consistent with background samples. Moreover, the lack of correlation with ESB results (e.g. SED126) indicates that these variations in toxicity cannot be attributed to Site-related COPCs.
- Benthic macroinvertebrate data indicate a large degree of variability in the number and types of organisms present. The benthic metrics calculated from the near-Site locations are generally similar to the values calculated from the background (reference) locations. These data indicate that, based on direct observation, population-level impairment to the benthic macroinvertebrate community is not occurring.

A weight-of-evidence evaluation of the 2006 data indicated that no COPC concentration thresholds were associated with adverse biological impacts within the study area and there were no corresponding adverse effects associated with COPCs. Overall, multiple lines of site-specific evidence support the conclusion that benthic biota in the near-Site area are not impacted by COPC levels relative to background.

12.3 Recommendations

Based on the findings of the 2006 investigation, including a weight of evidence evaluation that indicated absence of biological impacts relative to background, no remedial action is recommended for Hudson River sediments near the Site.

Sediment Remedial Investigation Report

Former General Motors Assembly Plant Site Sleepy Hollow, New York

13. References

AMEC. 2003a. Supplemental Phase II Investigation Data. Letter to James A. Moras, NYSDEC, March 17, 2003.

AMEC. 2004. Addendum No. 2 to Investigation Work Plan for Voluntary Cleanup Agreement. Former General Motors Assembly Plant Site, Sleepy Hollow, New York. AMEC Earth & Environmental Inc., New York, April 2004.

Blasland, Bouck & Lee, Inc. (BBL). 2004 Supplemental Sediment Investigation Work Plan. Former General Motors Assembly Plant Site, Sleepy Hollow, New York, May 2004.

BBL. 2006a. Draft Sediment Data Evaluation Technical Memorandum.

BBL. 2006b. Preliminary Draft Remedial Investigation Report for Brownfield Cleanup Agreements, Former General Motors Assembly Plant Site, Sleepy Hollow, New York.

BBL. 2006c. Supplemental Sediment Investigation Work Plan for Brownfield Cleanup Agreement-West Parcel Former General Motors Assembly Plant Site, Sleepy Hollow, New York.

Chapman, P.M, Dexter, R.N., and Long, E.R. 1987. Synoptic measures of sediment contamination, toxicity and infaunal community structure (the Sediment Quality Triad). Mar. Ecol. Prog. Ser. 37, 75-79.

Chapman, P.M. 1996. Presentation and interpretation of Sediment Quality Triad data. Ecotxicol. 5, 327-339.

Crane, J.L., D.D. MacDonald, C.G. Ingersoll, D.E. Smorong, R.A. Lindskoog, C.G. Severn, T.A. Berger and L.J. Field. Evaluation of numerical sediment quality targets for the St. Louis River area of concern. Arch. Environ. Contam. Toxicol. 43(1):1-10.

Divney Tung Schwalbe. 2005. Draft Environmental Impact Statement, Lighthouse Landing at Sleepy Hollow. Applicant: Roseland/Sleepy Hollow, LLC and General Motors Corporation. Divney Tung Schwalbe, LLP, White Plains, New York. 521pp.

EcolSciences, Inc. 2005. Assessment of Ecological Resources for Lighthouse Landing Redevelopment Project. Prepared for Roseland/Sleepy Hollow, LLC. Short Hills, NJ.

Former General Motors Assembly Plant Site Sleepy Hollow, New York

EMCON. 1996. Phase I Environmental Site Assessment, General Motors Tarrytown Assembly Plant.

EMCON. 1997. Phase II Environmental Site Investigation, General Motors Tarrytown Assembly Plant.

EMCON. 2001a. Phase III Extent of Contamination Study, General Motors Tarrytown Assembly Plant.

EMCON. 2001b. Interim Corrective Measures Completion Report, General Motors Tarrytown Assembly Plant. EMCON, Mahwah, New Jersey, August 2002, 40 pp. plus App.

Exponent and EMCON. 1999. *Data Report for the Sediment Quality Investigation*. Prepared for General Motors Corporation, Detroit, Michigan

Hunt JH, Anderson BS, Phillips BM, Newman J, Tjeerdema RS, Fairey R, Puckett HM, Stephenson M, Smith RW, Wilson CJ, Taberski KM. 2001. Evaluation and Use of Sediment Toxicity Reference Sites for Statistical Comparisons in Regional Assessments. *Environ Toxicol Chem.* 20:1266-1275.

Hyland, J.L., R.F. Van Dolah and T.R. Snoots. Predicting stress in benthic communities of southeastern U.S. Estuaries in relation to chemical contamination of sediments. Environmental Toxicology and Chemistry. 18(11):2557-2564.

Ingersoll, C.G., D.D. MacDonald, W.G. Brumbaugh, B.T. Johnson, N.E. Kemble, J.L. Kunz, T.W. T.W. May, N. Wang, J.R. Smith, D.W. Sparks and D.S. Ireland. 2002. Toxicity assessment of sediments from the Grand Calumet River and Indiana Harbor canal in northwestern Indiana, USA. Arch. Environ. Contam. Toxicol. 43(2):156-67.

Long, E.R., L.J. Field and D.D. MacDonald. 1998. Predicting toxicity in marine sediments with numerical sediment quality guidelines. Environmental Toxicology and Chemisty. 17(4):714-727.

Long, E.R. and L.G. Morgan. 1990. The Potential for Biological Effects of Sediment-Sorbed Contaminants Tested in the National States and Trends Program. National Oceanic Atmospheric Administration (NOAA) Technical Memorandum No. 5, OMA52. NOAA National Ocean Service. Seattle, Washington.

Former General Motors Assembly Plant Site Sleepy Hollow, New York

MacDonald, D.D., C.G. Ingersoll and T.A. Berger. 2000. Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems. Arch. Environ. Contam. Toxicol. 39:20-31.

Merritt, R. W., & Cummins, K. W. 1996. An introduction to the aquatic insects of North America, third edition. Dubuque, Iowa: Kendall/Hunt Pub. Co. Monakov, A. V. 2003. Feeding of Freshwater Invertebrates. Ghent, Belgium: Kenobi Productions.

New York State Department of Environmental Conservation (NYSDEC). 1999. Technical Guidance for Screening Contaminated Sediments.

NYSDEC. 2002a. Quality Assurance Work Plan for Biological Stream Monitoring in New York State. Stream Biomonitoring Unit.

NYSDEC. 2002b. Draft DER-10, Technical Guidance for Site Investigation and Remediation. New York State Department of Environmental Conservation. December.

NYSDEC. 2004. Proposed Plan: Onondaga Lake Bottom. Subsite of the Onondaga Lake Superfund Site. Syracuse, NY. November 29, 2004.

NYSDEC. 2005. Swimming in the Hudson River Estuary, Feasibility Report on Potential Sites. The Hudson River Estuary Program, New York State Department of Environmental Conservation and New York State Office of Parks. Prepared by Lawler, Matusky & Skelly Engnieers LLP and The Hudson Group LLC.

NYSDEC. 2007. The Hudson River Estuary Program: Watershed Conservation and Stormwater Management Program. http://www.dec.ny.gov/lands/5098.html.

Persaud, D. Jaagumagi, R., and A. Hayton. 1993. Guidelines for the Protection and Management of Aquatic Sediment Quality in Ontario. Ontario, Ministry of the Environment. Queen's Printer for Ontario.

Smith, C.L. 1985. The Inland Fishes of New York State. New York State Department of Environmental Conservation. Albany, NY.

Suter, G.W. II. 1993. Ecological Risk Assessment. Lewis Publishers: Boca Raton, FL.

Thorp, J. H., & Covich, A. P. 1991. Ecology and classification of North American freshwater invertebrates. San Diego, CA: Academic Press.

Former General Motors Assembly Plant Site Sleepy Hollow, New York

U.S. Environmental Protection Agency (USEPA). 1989. Risk Assessment Guidance for Superfund, Volume I, Human Health Evaluation Manual (Part A). U.S. Environmental Protection Agency, Office of Solid Waste and Emergency Response. EPA/540/1-89-002

USEPA. 1992a. Sediment Classification Methods Compendium. EPA 823-R-92-006.

USEPA. 1992b. Statistical Analysis of Ground-water Monitoring Data at RCRA Facilities. Addendum to Interim Final Guidance. Office of Solid Waste, Permits and State Programs Division. July. <u>http://www.epa.gov/swertio1/chartext_edu.htm#stats</u>.

USEPA. 1994. Statistical Methods for Evaluating the Attainment of Cleanup Standards, Vol. 3: Reference-Based Standards for Soils and Solid Media. EPA 230-R-94-004. Washington, DC: Office of Policy, Planning, and Evaluation. http://www.epa.gov/swertio1/chartext_edu.htm#stats.

USEPA. 1998a. Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities: Unified Guidance. Draft. Washington, DC: Office of Solid Waste. http://www.epa.gov/swertio1/chartext_edu.htm#stats.

USEPA. 1998b. Statistical Tests for Background Comparison at Hazardous Waste Sites. Supplemental Guidance to RAGS: Region 4 Bulletins-Addition #1. Atlanta, GA. November. <u>http://www.epa.gov/swertio1/chartext_edu.htm#stats</u>.

USEPA. 2000. Methods for measuring the toxicity and bioaccumulation of sedimentassociated contaminants with freshwater invertebrates, Second Edition. EPA-600-R99-064. Office of Science and Technology, Washington, DC.

USEPA. 2001. Methods for Assessing the Chronic Toxicity of Marine and Estuarine Sediment-Associated Contaminants with the Amphipod *Leptocheirus plumolosus*. Office of Research and Development. Washington DC. EPA 600/R-01/020.

USEPA. 2002a. Calculating Upper Confidence Limits for Exposure Point Concentrations at Hazardous Waste Sites. Office of Emergency and Remedial Response. 9285.6-10. Washington, D.C.

USEPA. 2002b. National Recommended Water Quality Criteria: 2002. Office of Water and Office of Science and Technology, Washington, DC. EPA-822-R-02-047.

Former General Motors Assembly Plant Site Sleepy Hollow, New York

USEPA. 2005a. Procedures for the Derivation of Equilibrium Partitioning Sediment Benchmarks (ESBs) for the Protection of Benthic Organisms: Metal Mixtures (Cadmium, Copper, Lead, Nickel, Silver, and Zinc). Office of Research and Development, Washington, DC. EPA-600-R-02-011.

USEPA. 2005b. Contaminated Sediment Remediation Guidance for Hazardous Waste Sites. Office of Solid Waste and Emergency Response, Washington, DC. December. EPA-540-R-05-012.

USEPA. 2006. National Recommended Water Quality Criteria: 2006. Office of Water and Office of Science and Technology, Washington, DC.

Versar. 2003. Hudson River Estuary Biocriteria Final Report. Submitted to NYSDEC, under Contract #C004043.

Wall, G.R., K. Riva-Murray, and P.J. Phillips. 1998. Water Quality in the Hudson River Basin, New York and Adjacent States, 1992-95. U.S. Geological Circular 1165. U.S. Department of the Interior.

Weisberg, S.B., J. Ranasinghe, L. Schaffner, R. Diaz, D. Dauer, J. Frithsen. 1997. An Estuarine Benthic Index of Biotic Integrity (B-IBI) for Chesapeake Bay. Estuaries. Vol. 20, No. 1. pp 149-158.

Tables

Laboratory Analais Inorganics PCBs PAHs Grain Size Solids TOC Water Quality V X X X X X X X X SEDD16 X X X X X X X X SEDD17 X X X X X X X X SEDD2A X X X X X X X X SEDD2C X X X X X X X X X SEDD2C X	Medium:			SED	DIMENT			SURFACE WATER
SED01A X <th></th> <th>Inorganics</th> <th>PCBs</th> <th>PAHs</th> <th>Grain Size</th> <th>Solids</th> <th>тос</th> <th>Water Quality</th>		Inorganics	PCBs	PAHs	Grain Size	Solids	тос	Water Quality
SED01A X <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td>					-			
SED01B X <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
SED01C X <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
SED02A X <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
SED22B X <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
SED02C X X X X X X X X SED03B X X X X X X X X SED03B X X X X X X X X X SED04A X X X X X X X X SED04B X X X X X X X X SED05C X X X X X X X X X SED06B X								
SED03A X <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
SED03B X <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
SED03C X X X X X X X X SED04B X X X X X X X X SED04C X X X X X X X X SED05A X X X X X X X X SED05B X X X X X X X X SED06C X X X X X X X X X SED06C X								
SED04A X X X X X X X SED04C X X X X X X X X SED05A X X X X X X X X SED05B X X X X X X X X SED05C X X X X X X X X SED06A X <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>								
SED04B X <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
SED05A X <td>SED04B</td> <td>Х</td> <td></td> <td>Х</td> <td>Х</td> <td></td> <td></td> <td></td>	SED04B	Х		Х	Х			
SED05E X <td>SED04C</td> <td>Х</td> <td>Х</td> <td>Х</td> <td>Х</td> <td>Х</td> <td>Х</td> <td>Х</td>	SED04C	Х	Х	Х	Х	Х	Х	Х
SED05C X <td>SED05A</td> <td>Х</td> <td>Х</td> <td>Х</td> <td>Х</td> <td>Х</td> <td>Х</td> <td>Х</td>	SED05A	Х	Х	Х	Х	Х	Х	Х
SED06A X <td>SED05B</td> <td>Х</td> <td>Х</td> <td>Х</td> <td>Х</td> <td>Х</td> <td>Х</td> <td>Х</td>	SED05B	Х	Х	Х	Х	Х	Х	Х
SED06B X <td>SED05C</td> <td>Х</td> <td>Х</td> <td>Х</td> <td>Х</td> <td>Х</td> <td>Х</td> <td>Х</td>	SED05C	Х	Х	Х	Х	Х	Х	Х
SED06C X <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
SED07A X <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
SED07B X <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
SED07C X <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
SED08A X <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
SED08B X <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
SED08C X <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
SED09A X <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
SED09B X <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
SED09C X <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
SED10A X <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
SED10B X <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
SED10C X <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
SED11A X <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
SED11B X <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
SED11C X <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	-							
SED12B X <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
SED12C X <td>SED12A</td> <td>Х</td> <td>Х</td> <td>Х</td> <td>Х</td> <td>Х</td> <td>Х</td> <td>Х</td>	SED12A	Х	Х	Х	Х	Х	Х	Х
SED13A X <td>SED12B</td> <td>Х</td> <td>Х</td> <td>Х</td> <td>Х</td> <td>Х</td> <td>Х</td> <td>Х</td>	SED12B	Х	Х	Х	Х	Х	Х	Х
SED13B X <td>SED12C</td> <td>Х</td> <td>Х</td> <td>Х</td> <td>Х</td> <td>Х</td> <td>Х</td> <td>Х</td>	SED12C	Х	Х	Х	Х	Х	Х	Х
SED13C X <td></td> <td>Х</td> <td>Х</td> <td>Х</td> <td>Х</td> <td>Х</td> <td></td> <td>Х</td>		Х	Х	Х	Х	Х		Х
SED14A X <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
SED14B X <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
SED14C X <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
SED15A X <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
SED15B X <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
SED15C X <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
SED16A X <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
SED16B X <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
SED16C X <td></td> <td>V</td> <td>V.</td> <td>V</td> <td>V</td> <td>V</td> <td>V</td> <td>V</td>		V	V.	V	V	V	V	V
SED17A X <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
SED17B X <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
SED17C X <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
SED18A X <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
SED18B X <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
SED18C X <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
SED19A X <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
		Х	Х	Х	Х	Х	Х	

Medium:			SED	IMENT			SURFACE WATER
Laboratory Analsis	Inorganics	PCBs	PAHs	Grain Size	Solids	тос	Water Quality
				R-SITE			
00000	V	V		4 (GM)	V	v	V
SED19C SED20A	X	X	X	X	X	X	X
SED20B	X	X	X	X	X	X	X
SED20C	X	X	X	X	X	X	X
SED21A	Х	Х	Х	Х	Х	Х	Х
SED21B	X	X	X	X	X	X	X
SED21C SED22A	X	X	X	X	X	X	X
SED22B	X	X	X	X	X	X	X
SED22C	X	X	X	X	X	X	X
SED23A	Х	Х	Х	Х	Х	Х	Х
SED23B	Х	Х	Х	Х	Х	Х	Х
SED23C	X	X	X	X	X	X	X
SED24A SED24B	X	X	X	X	X	X	X
SED24B SED24C	X	X	X	X	X	X X	X
SED25A	X	X	X	X	X	X	X
SED25B	Х	Х	Х	Х	Х	Х	Х
SED25C	Х	Х	Х	Х	Х	Х	Х
SED26A	X	X	X	X	X	X	X
SED26B SED26C	X	X	X	X	X	X	X
SED20C	X	X	X	X	X	X	X
SED27B	X	X	X	X	X	X	X
SED27C	Х	Х	Х	Х	Х	Х	Х
SED28A	Х	Х	Х	Х	Х	Х	Х
SED28B	X	X	X	X	X	X	X
SED28C SED29A	X	X	X	X	X	X	X
SED29A SED29B	X	X	X	X	X	X	X
SED29C	X	X	X	X	X	X	X
SED30A	Х	Х	Х	Х	Х	Х	Х
SED30B	Х	Х	Х	Х	Х	Х	Х
SED30C	X	X	X	X	X	X	X
SED31A SED31B	X	X	X	X X	X	X	X
SED31C	X	X	X	X	X	X	X
SED32A	Х	Х	Х	Х	Х	Х	Х
SED32B	Х	Х	Х	Х	Х	Х	Х
SED32C	X	X	X	X	X	X	X
SED33A SED33B	X	X	X	X	X	X	X
SED33B SED33C	X	X	X	X	X	X X	X
SED34A	X	X	X	X	X	X	X
SED34B	Х	Х	Х	Х	Х	Х	Х
SED34C	X	Х	Х	Х	Х	Х	Х
SED35A	X	X	X	X	X	X	X
SED35B SED35C	X	X X	X	X	X	X	X
SED35C SED36A	X	X	X	X	X	× X	X
SED36B	X	X	X	X	X	X	X
SED36C	Х	Х	Х	Х	Х	Х	Х
SED37A	Х	Х	Х	Х	Х	X	Х
SED37B	X	X	X	X	X	X	X
SED37C SED38A	X X	X X	X X	X X	X X	X	X X
SED38A SED38B	X	X	X	X	X	X	X
SED38C	X	X	X	X	X	X	X
SED39A	X	X	X	X	X	X	X
SED39B	Х	Х	Х	Х	Х	Х	Х
SED39C	Х	Х	Х	Х	Х	Х	Х

Medium:			SEI	DIMENT			SURFACE WATER
Laboratory Analsis	Inorganics	PCBs	PAHs	Grain Size	Solids	тос	Water Quality
				AR-SITE			
T01A	Х		1997 (Exponent)	Т	1	ſ
T01A	X						
T01C	X						
T01D	Х						
T02A	Х						
T02B	X						
T02C T02D	X X						
T02D	X						
T03A	X						
T03B	Х						
T03C	Х						
T03D	X						
T03E	X						
T03F T04C	X X			1	+	+	
T04C	X					1	
T04E	X			1			
T04F	Х						
T04G	Х						
T04H	X						
T04I T05A	X X						
T05A	X						
T05C	X						
T05D	Х						
T05E	Х						
T05F	X						
T05G	X X						_
T05H T05I	X						
T06A	X						
T06B	Х						
T06C	Х						
T06D	X						
T06E	X						_
T06F T06G	X X						
T06H	X						
T06I	X						
T06K	Х						
T07A	Х						
T07B	X			-	}	+	
T07C T07D	X X						
T07D	× X			1	+	+	
T07E	X		1		1	1	
T07G	Х						
T07H	Х						
T08A	X						
T08B T08C	X X						
T08C	X			1	+	1	
T08E	Х			1	1	1	
T08F	Х						
T08G	Х						
T08I	X				<u> </u>		
T09A	X			-	}	+	
T09B T09C	X X						
T09C	X			1	+	1	
T09E	X			1	1	1	
T09F	Х						
T09G	Х						
T10A	Х						

Sediment Remedial Investigation Report Former General Motors North Tarrytown Assembly Plant Sleepy Hollow, New York

Medium:			SED	DIMENT			SURFACE WATER
Laboratory Analsis	Inorganics	PCBs	PAHs	Grain Size	Solids	тос	Water Quality
				AR-SITE			
T10B	Х		1997 (Exponent)			_
T10B	X						
T10D	X						
T10E	Х						
T10F	X						
T10G T11C	X X						
T11D	X						
T11E	X						
T11F	Х						
T11G	X						
T11H T12A	X X						
T12A T12B	X			+ +			
T12D	X			<u>† </u>			
T12D	Х						
T12E	Х						
T12F	X			├ ──── │			
T13A T13B	X						
T13D	X						
T13D	X			1			
T13E	Х						
T13F	Х						
				GROUND 04 (GM)			
SED40A	Х	Х	200	X	Х	Х	Х
SED40B	X	X	X	X	X	X	X
SED40C	Х	Х	Х	Х	Х	Х	Х
SED41A	Х	Х	Х	Х	Х	Х	Х
SED41B	X	X	<u>X</u>	X	X	X	X
SED41C SED42A	X	X X	X X	X X	X X	X X	X
SED42B	X	X	X X	X	X	X	X
SED42C	Х	Х	Х	Х	Х	Х	Х
SED43A	Х	Х	Х	Х	Х	Х	Х
SED43B	X	X	X	X	X	X	X
SED43C SED44A	X X	X X	X X	X X	X X	X X	X
SED44A SED44B	X	X	X	X	X	× X	X
SED44C	X	X	X	X	X	X	X
SED45A	Х	Х	Х	Х	Х	Х	Х
SED45B	X	X	X	X	X	X	X
SED45C	Х	Х	Х		X	X	X
			-	Exponent)			
T14A	Х			[[
T14B	Х						
T14C	X						
T14D T14E	X			├ ──── │			
T14E T15A	X X			├			
T15B	X			<u> </u>			
T15C	Х						
T15D	Х						
T16A	X						
T16B T16C	X X			├			
T16C	X			╂────╂			
T17B	X			1 1			
T17C	Х						
T17D	Х						

Note: Inorganics include the following metals: Antimony, Arsenic, Barium, Cadmium, Chromium, Copper, Lead, Manganese, Mercury, Nickel, Zinc

Source	LEL	SEL	GM, 2004	GM, 2004	GM, 2004	GM, 2004	GM, 2004	GM, 2004							
Sample ID			SED1A	SED2A	SED3A	SED4A	SED5A	SED6A	SED7A	SED8A	SED9A	SED10A	SED11A	SED12A	SED13A
Date			7/7/04	7/7/04	7/7/04	7/7/04	7/7/04	7/8/04	7/8/04	7/8/04	7/8/04	7/8/04	7/8/04	7/8/04	7/8/04
			Near-Site	Near-Site	Near-Site	Near-Site	Near-Site	Near-Site							
Depth (inches)			0-2	0-2	0-2	0-2	0-2	0-2	0-2	0-2	0-2	0-2	0-2	0-2	0-2
Solids (%)			52.6	49.6	38.5	38.7	51.3	49.5	58.5	50.5 [42.8]	50.7	81.2	56.7	47.6	52.7
TOC (mg/kg)			17,500	20,000	28,800	31,700	20,500	6,890	23,500	19,100 [22,500 J]	24,700	6,470	15,400	21,700	13,400
Total PCB (mg/kg)	0.07	5.3	1.3	1.8	0.45	0.43	0.13 U	0.89 J	0.71 J	0.65 [0.48 J]	0.353	1.03	0.12 U	0.14 U	2.02 J
Total PAH (mg/kg)	4.0	100	3.928 J	7.538 J	4.18 J	3.963 J	5.357 J	4.662 J	5.9 J	3.629 J [5.56 J]	5.337 J	3.56 J	6.599 J	6.43 J	2.92 J
Antimony (mg/kg)	2.0	25	1.08 UJ	1.15 UJ	1.48 UJ	1.47 UJ	1.11 UJ	0.63 UJ	0.55 UJ	0.64 UJ [0.75 UJ]	0.61 UJ	34.3 J	1.01 UJ	1.2 UJ	1.08 UJ
Arsenic (mg/kg)	6.0	33	7.3	14.3 J	9.3 J	9.5 J	19.2	13.7	10.9	7.6 [9 J]	7.4	6.4	16.5	21.8 J	11.3
Barium (mg/kg)	NA	NA	162	362 J	96.1 J	92.1 J	83.3	106	178	79 [90.6 J]	79.9	7,880	66.7	102 J	213
Cadmium (mg/kg)	0.6	9.0	0.18 UJ	1.2 J	0.05 UJ	0.05 UJ	0.04 UJ	0.41 J	0.05 UJ	0.79 UJ [1.1 UJ]	0.8 UJ	0.29 J	0.03 UJ	0.04 UJ	0.74 J
Chromium (mg/kg)	26	110	67.9	121 J	61.3 J	70.1 J	54.9	102	81.7	53.2 [61 J]	47.5	196	39.3	71.2 J	81.6
Copper (mg/kg)	16	110	67.5	158 J	65 J	76.5 J	101	141	113	61.2 [71.3 J]	52.5	65.8	84.6	123 J	90.7
Lead (mg/kg)	31	110	82.9	170 J	70.9 J	85.5 J	105	136	114	67.5 [78.2 J]	60	1,070	84.1	146 J	108
Manganese (mg/kg)	460	1100	508	561 J	1,360 J	1,220 J	515	558	453	838 [969 J]	1,020	250	525	780 J	591
Mercury (mg/kg)	0.2	1.3	1.2	NA	0.63 J	0.79 J	1.3	3.4	1.8	0.69 [0.82 J]	0.55	0.13	1.1	1.4 J	2.3
Nickel (mg/kg)	16	50	29.1	39 J	35.3 J	37.5 J	29.6	33.8	29.3	28 [32.6 J]	26.8	31.2	27.3	33.7 J	32.8
Zinc (mg/kg)	120	270	172	260 J	197 J	212 J	212	246	214	162 [191 J]	155	2,170	185	259 J	201

Sediment Remedial Investigation Report Former General Motors North Tarrytown Assembly Plant Sleepy Hollow, New York

Source	LEL	SEL	GM, 2004	GM, 2004	GM, 2004										
Sample ID			SED14A	SED15A	SED16A	SED17A	SED18A	SED19A	SED20A	SED21A	SED22A	SED23A	SED24A	SED25A	SED26A
Date			7/9/04	7/9/04	7/12/04	7/12/04	7/9/04	7/9/04	7/12/04	7/9/04	7/9/04	7/12/04	7/12/04	7/12/04	7/13/04
			Near-Site	Near-Site	Near-Site										
Depth (inches)			0-2	0-2	0-2	0-2	0-2	0-2	0-2	0-2	0-2	0-2	0-2	0-2	0-2
Solids (%)			47.1	41.9	54.6	48.9	46.6	43.6	51.6	46.8	61.4	57.5	55.6 [57.1]	50.8	78.7
TOC (mg/kg)			26,000 J	24,300 J	17,800	19,000 J	23,400 J	22,400 J	36,200	27,400 J	13,000	10,700	10,200 [18,900]	22,400	3,140
Total PCB (mg/kg)	0.07	5.3	0.81 J	1.15 J	0.12 U	0.78 J	0.61 J	1.61 J	1.9	0.64 J	0.38 J	0.12 U	0.12 U [0.12 U]	1.27 J	0.085 UJ
Total PAH (mg/kg)	4.0	100	5.46 J	10.32 J	6.242 J	4.7 J	6.065 J	10.88 J	5.711 J	7.192 J	1.046 J	0.57 U	0.59 U [0.58 U]	1.027 J	1.499 J
Antimony (mg/kg)	2.0	25	1.27 UJ	1.43 UJ	1 UJ	1.2 UJ	0.68 UJ	2.6 UJ	1.1 UJ	0.67 UJ	0.52 UJ	0.99 UJ	1 UJ [1 UJ]	1.1 UJ	0.9 UJ
Arsenic (mg/kg)	6.0	33	8.9 J	9.6 J	17.9	10 J	9 J	9 J	20.3	18.7 J	10.7	6.8	8.3 [9.9]	14.3	3.5
Barium (mg/kg)	NA	NA	111 J	212 J	73.8	90.6 J	118 J	965 J	93.4	110 J	177	39.8	40.7 [37.6]	73	27.7
Cadmium (mg/kg)	0.6	9.0	0.04 UJ	0.05 UJ	0.16 UJ	0.56 J	0.04 UJ	0.04 UJ	0.28 J	0.38 J	0.03 UJ	0.48 UJ	0.034 UJ [0.36 UJ]	0.09 UJ	0.35 UJ
Chromium (mg/kg)	26	110	65.3 J	67.7 J	42.2	74.3 J	69.1 J	152 J	79.5	113 J	39.4	23.3	24.3 [23.7]	52	13.6
Copper (mg/kg)	16	110	73.8 J	69 J	78.5	90 J	76.7 J	69.5 J	127	154 J	44.1	16.7	17.6 [17.3]	55.4	12.7
Lead (mg/kg)	31	110	79.6 J	106 J	86.8	92.9 J	88.7 J	167 J	115	145 J	58.7	16.8	16.4 [16.1]	52.2	10.3
Manganese (mg/kg)	460	1100	742 J	1,380 J	599	618 J	733 J	1,030 J	1,040	1,020 J	550	502	804 [861]	891	221
Mercury (mg/kg)	0.2	1.3	0.91 J	0.75 J	0.8	1.2 J	0.87 J	0.78 J	1.1	2.5 J	0.47	0.09	0.08 [0.18]	0.69	0.04 U
Nickel (mg/kg)	16	50	31.7 J	34.5 J	28.2	31.2 J	33.5 J	37.3 J	32.3	38.2 J	26.4	23.8	20.4 [20.3]	33.5	15.7
Zinc (mg/kg)	120	270	191 J	240 J	182 J	194 J	199 J	467 J	222 J	291 J	123	73.8 J	69.7 J [76.3 J]	139 J	49.6

See Notes on Page 21.

Source	LEL	SEL	GM, 2004	GM, 2004	GM, 2004	GM, 2004	GM, 2004	GM, 2004	GM, 2004	GM, 2004	GM, 2004	GM, 2004	GM, 2004	GM, 2004	GM, 2004
Sample ID			SED27A	SED28A	SED29A	SED30A	SED31A	SED32A	SED33A	SED34A	SED35A	SED36A	SED37A	SED38A	SED39A
Date			7/13/04	7/13/04	7/13/04	7/13/04	7/13/04	7/13/04	7/14/04	7/14/04	7/14/04	7/14/04	7/14/04	7/14/04	7/14/04
			Near-Site	Near-Site	Near-Site	Near-Site	Near-Site	Near-Site	Near-Site	Near-Site	Near-Site	Near-Site	Near-Site	Near-Site	Near-Site
Depth (inches)			0-2	0-2	0-2	0-2	0-2	0-2	0-2	0-2	0-2	0-2	0-2	0-2	0-2
Solids (%)			62.1	59.7	61.7	63.3 [61.8]	53.6	42.7	49.8	46.6	47.3	50	79	52.2 [47.6]	59.4
TOC (mg/kg)			21,300	12,500	13,800	13,600 [16,200]	19,300	19,200 J	25,400	24,100 J	26,700 J	16,100	980	23,800 [22,700 J]	7,490
Total PCB (mg/kg)	0.07	5.3	0.11 UJ	0.06	0.11 UJ	0.49 [0.324]	0.52 J	0.56 J	0.44 J	0.88 J	0.68 J	0.7 J	0.085 U	0.42 [0.57 J]	0.246 J
Total PAH (mg/kg)	4.0	100	0.056 J	0.146 J	0.53 U	7.582 J [16.439 J]	3.238 J	3.66 J	5.151 J	9.697 J	6.69 J	3.423 J	0.42 U	7.82 J [7.27 J]	2.143 J
Antimony (mg/kg)	2.0	25	1.2 UJ	1.2 UJ	1.2 UJ	1.1 UJ [1.2 UJ]	1.3 UJ	1.7 UJ	0.63 UJ	0.67 UJ	0.68 U	0.65 UJ	0.65 J	0.61 UJ [0.67 UJ]	0.52 UJ
Arsenic (mg/kg)	6.0	33	6.9	6.8	6.4	5.8 [5.7]	7.1	7.7 J	8.2 J	9.9 J	9.3 J	7 J	1.9 J	7 J [8.4 J]	5.8 J
Barium (mg/kg)	NA	NA	48.3	32.3	37	136 [133]	69.5	73.3 J	97.1	218 J	161 J	65.6	78.5	106 [96.6 J]	109
Cadmium (mg/kg)	0.6	9.0	0.41 UJ	0.44 UJ	0.49 UJ	0.2 UJ [0.05 UJ]	0.26 UJ	0.16 UJ	0.18 J	0.88 J	0.47 J	0.26 UJ	0.14 UJ	0.29 J [0.33 UJ]	0.29 J
Chromium (mg/kg)	26	110	23.8	23.8	22.8	32.5 [36]	52.7	58.8 J	49.8	74.1 J	57.6 J	52.2	14.1	46.3 [49.8 J]	37.5
Copper (mg/kg)	16	110	23	14.7	16.1	33.1 [39]	59.3	66 J	59.8	83.3 J	66.6 J	58.9	8.6	52.9 [57.4 J]	36.4
Lead (mg/kg)	31	110	34.9	12.6	14.4	115 [65.2]	59.6	70.5 J	63.7	98.6 J	74.9 J	61.5	39.1	64.2 [59.5 J]	52
Manganese (mg/kg)	460	1100	1,880	720	695	489 [403]	643	919 J	740	652 J	779 J	577	192	769 [815 J]	555
Mercury (mg/kg)	0.2	1.3	0.12	0.06	0.06	0.42 [0.42]	0.59	0.74 J	0.59 N	1.1 J	0.74 J	0.67 N	0.06 N	0.63 N [0.63 J]	0.51 N
Nickel (mg/kg)	16	50	25.5	21.7	21.8	19 [21.2]	26.6	32.2 J	26.7	32 J	27.7 J	27.3	11.9	25.1 [26.8 J]	21.3
Zinc (mg/kg)	120	270	78.2	66.4	67.9	143 [127]	153	178 J	151	210 J	168 J	156	82.5	147 [154 J]	118

Source	LEL	SEL	GM, 2004	GM, 2004	GM, 2004	GM, 2004	GM, 2004	GM, 2004							
Sample ID			SED1B	SED2B	SED3B	SED4B	SED5B	SED6B	SED7B	SED8B	SED9B	SED10B	SED11B	SED12B	SED13B
Date			7/7/04	7/7/04	7/7/04	7/7/04	7/7/04	7/8/04	7/8/04	7/8/04	7/8/04	7/8/04	7/8/04	7/8/04	7/8/04
			Near-Site	Near-Site	Near-Site	Near-Site	Near-Site	Near-Site							
Depth (inches)			2-6	2-6	2-6	2-6	2-6	2-6	2-6	2-6	2-6	2-6	2-6	2-6	2-6
Solids (%)			55.1	58.3	42.8	40.8	52.1	53.2	51.4	47.5 [44.7]	52.6	79	55.1	52	57.1
TOC (mg/kg)			17,000	16,700	20,200	25,400	19,800	19,000	17,000	22,200 J [22,800 J]	25,100	4,880	25,800	17,100	20,800
Total PCB (mg/kg)	0.07	5.3	1.2	0.44	0.41	0.52	0.13 U	0.076 J	0.94 J	0.81 J [0.71 J]	0.51	2.7	0.12 U	0.13 U	0.85
Total PAH (mg/kg)	4.0	100	4.035 J	2.76 J	4.27 J	5.018 J	9.136 J	9.314 J	6.426 J	5.308 J [4.31 J]	7.26 J	14.74 J	12.577 J	6.043 J	2.198 J
Antimony (mg/kg)	2.0	25	1.03 UJ	0.98 UJ	1.33 UJ	1.4 UJ	1.09 UJ	0.6 UJ	0.64 J	0.68 UJ [0.69 UJ]	0.61 UJ	48.4	1.01 UJ	1.1 UJ	1 UJ
Arsenic (mg/kg)	6.0	33	11.3	11.9	10.8 J	11 J	18.4	17.2	14.3	9.2 J [9.1 J]	7.4	10.2	16.4	15.2	11.9
Barium (mg/kg)	NA	NA	125	89.2	93.1 J	91.9 J	84.4	76.8	114	80 J [87.3 J]	149	8,000	67.5	72.8	99.7
Cadmium (mg/kg)	0.6	9.0	0.63 J	0.05 UJ	0.04 UJ	0.05 UJ	0.04 UJ	1.1 UJ	0.15 UJ	0.8 UJ [0.88 UJ]	0.8 UJ	1.2 J	0.03 UJ	0.04 UJ	0.94 J
Chromium (mg/kg)	26	110	79.2	56.6	70.1 J	67.7 J	46.8	51	106	63.1 J [64.7 J]	48.8	264	41	46.2	87.6
Copper (mg/kg)	16	110	95.3	63.7	80 J	73.5 J	97	95.3	148	71.4 J [75.1 J]	53.6	43.2	103	92.5	114
Lead (mg/kg)	31	110	102	70.4	88.5 J	81.1 J	98.7	100	161	81.9 J [84.7 J]	82.7	1,470	92.5	103	126
Manganese (mg/kg)	460	1100	609	603	1,280 J	1,150 J	543	499	554	931 J [982 J]	1,100	279	509	515	581
Mercury (mg/kg)	0.2	1.3	2.4	2.2	0.84 J	0.76 J	1.2	1	2.3	0.87 J [1.3 J]	0.62	0.32	1.4	0.99	2.6
Nickel (mg/kg)	16	50	32.7	29.2	35.5 J	35.8 J	28.9	29.8	34.2	30.9 J [32.5 J]	26.1	48.3	30.7	28.8	31.3
Zinc (mg/kg)	120	270	194	143	203 J	201 J	201	198	268	182 J [192 J]	166	2,300	209	202	212

Sediment Remedial Investigation Report Former General Motors North Tarrytown Assembly Plant Sleepy Hollow, New York

Source	LEL	SEL	GM, 2004	GM, 2004	GM, 2004										
Sample ID			SED14B	SED15B	SED16B	SED17B	SED18B	SED19B	SED20B	SED21B	SED22B	SED23B	SED24B	SED25B	SED26B
Date			7/9/04	7/9/04	7/12/04	7/12/04	7/9/04	7/9/04	7/12/04	7/9/04	7/9/04	7/12/04	7/12/04	7/12/04	7/13/04
			Near-Site	Near-Site	Near-Site										
Depth (inches)			2-6	2-6	2-6	2-6	2-6	2-6	2-6	2-6	2-6	2-6	2-6	2-6	2-6
Solids (%)			46.7	38.4	63.1	50.6	47.4	44.8	48.1	47.4	63.3	58.6	64.4 [66.7]	53.7	73.8
TOC (mg/kg)			26,300 J	24,500 J	16,900	24,700	22,100 J	24,800 J	23,200 J	23,900 J	11,300	10,800	12,000 [16,100]	18,700	2,380
Total PCB (mg/kg)	0.07	5.3	1 J	0.55 J	0.11 U	0.43	1.33 J	0.99 J	1.7 J	0.63 J	0.11 U	0.11 U	0.1 U [0.1 U]	2.11 J	0.091 UJ
Total PAH (mg/kg)	4.0	100	5.29 J	4.448 J	6.829 J	6.71 J	4.66 J	11.27 J	6.03 J	5.49 J	0.263 J	0.56 U	0.51 U [0.49 U]	2.774 J	0.45 U
Antimony (mg/kg)	2.0	25	1.28 UJ	1.56 UJ	0.9 UJ	1.1 UJ	0.67 UJ	2.2 UJ	1.2 UJ	0.65 UJ	0.5 UJ	0.97 UJ	0.89 UJ [1.1 UJ]	1.1 UJ	1 UJ
Arsenic (mg/kg)	6.0	33	9 J	10.4 J	14.6	20.4	11.3 J	10.1 J	28.8 J	16.2 J	7.1	5.8	6.6 [6.2]	12.3	4.7
Barium (mg/kg)	NA	NA	107 J	92.6 J	54.4	103	226 J	359 J	108 J	114 J	30.4	41.8	31.7 [32.3]	95.6	21.2
Cadmium (mg/kg)	0.6	9.0	0.04 UJ	0.05 UJ	0.23 UJ	0.21 J	0.13 UJ	0.04 UJ	0.04 UJ	1.1 J	0.03 UJ	0.43 UJ	0.029 UJ [0.074 UJ]	0.6 UJ	0.45 UJ
Chromium (mg/kg)	26	110	71.8 J	69.7 J	29.9	91.5	103 J	77.4 J	86.5 J	110 J	20.2	22.1	19.9 [19.8]	85.4	12.5
Copper (mg/kg)	16	110	82 J	76.3 J	56.4	198	109 J	85.5 J	174 J	146 J	15.7	13.4	11.4 [10.9]	110	12.3
Lead (mg/kg)	31	110	87.3 J	97.9 J	56.2	124	134 J	132 J	144 J	144 J	13.5	14.5	10.3 [8.9]	99.9	6.8 U
Manganese (mg/kg)	460	1100	829 J	1,470 J	570	783	706 J	1,170 J	1,320 J	1,200 J	663	625	784 [668]	825	275
Mercury (mg/kg)	0.2	1.3	0.94 J	0.8 J	0.61	1.2	1.7 J	0.92 J	1.4 J	4.8 J	0.09	0.06 U	0.05 U [0.05 U]	1.5	0.04 U
Nickel (mg/kg)	16	50	32.6 J	39.5 J	23.3	32.8	38.4 J	37.8 J	36 J	38.3 J	20.4	22.9	19.3 [19]	36	17
Zinc (mg/kg)	120	270	193 J	224 J	125 J	242 J	242 J	267 J	254 J	280 J	65.7	68.3 J	57.8 J [56.7 J]	194 J	45.2

See Notes on Page 21.

Source	LEL	SEL	GM, 2004	GM, 2004	GM, 2004	GM, 2004	GM, 2004	GM, 2004	GM, 2004	GM, 2004	GM, 2004	GM, 2004	GM, 2004	GM, 2004	GM, 2004
Sample ID			SED27B	SED28B	SED29B	SED30B	SED31B	SED32B	SED33B	SED34B	SED35B	SED36B	SED37B	SED38B	SED39B
Date			7/13/04	7/13/04	7/13/04	7/13/04	7/13/04	7/13/04	7/14/04	7/14/04	7/14/04	7/14/04	7/14/04	7/14/04	7/14/04
			Near-Site	Near-Site	Near-Site	Near-Site	Near-Site	Near-Site	Near-Site	Near-Site	Near-Site	Near-Site	Near-Site	Near-Site	Near-Site
Depth (inches)			2-6	2-6	2-6	2-6	2-6	2-6	2-6	2-6	2-6	2-6	2-6	2-6	2-6
Solids (%)			53.5	72.2	65.1	66.3 [67.1]	53.7	57.4	42.5	52.5	56	46.3	81.2	51.5 [51.2]	66.1
TOC (mg/kg)			17,000	12,300	14,500	10,300 [16,900]	34,500	22,100	17,600 J	22,500	26,900	19,500 J	707	19,700 [23,400]	9,240
Total PCB (mg/kg)	0.07	5.3	0.13 UJ	0.025 J	0.1 UJ	0.53 [0.379]	0.7 J	0.46 J	0.63 J	2.41 J	0.66	0.79 J	0.083 U	1.9 [6.33]	0.241
Total PAH (mg/kg)	4.0	100	0.62 U	0.46 U	0.51 U	6.882 J [1.312 J]	5.11 J	2.431 J	8.19 J	4.283 J	7.201 J	3.961 J	0.41 U	5.32 J [5.69 J]	1.408 J
Antimony (mg/kg)	2.0	25	1.4 UJ	1 UJ	1.1 UJ	1.1 UJ [1.1 UJ]	1.3 UJ	1.3 UJ	0.74 UJ	1.7 UJ	0.57 UJ	0.66 UJ	0.93 J	1 J [1.3 J]	3 J
Arsenic (mg/kg)	6.0	33	7.7	4.8	7.5	8.6 [8.8]	7.9	6.9	9.8 J	14	7.5 J	8.4 J	1.7 J	9.5 J [10.8 J]	9.7 J
Barium (mg/kg)	NA	NA	58.4	26.2	31.3	88.1 [83.4]	101	64.2	130 J	652	142	80.7 J	44.2	231 [229]	212
Cadmium (mg/kg)	0.6	9.0	0.57 UJ	0.37 UJ	0.45 UJ	0.17 UJ [0.03 UJ]	0.42 J	0.09 UJ	0.48 J	1.9 J	0.55 J	0.11 J	0.12 UJ	1.8 J [2.2 J]	1.2 J
Chromium (mg/kg)	26	110	26.9	18	21.5	34.5 [37.3]	66.4	46.3	62.1 J	110	61.3	70 J	13.1	97 [113]	47.5
Copper (mg/kg)	16	110	26.1	10.9	12.8	39.6 [41.5]	75.4	52.9	77.5 J	120	65.8	82.8 J	9	86.8 [95.8]	42.7
Lead (mg/kg)	31	110	41.3	8.9	10	52.9 [57.1]	80.5	59.3	82.3 J	167	76.9	83.7 J	53.7	121 [144]	144
Manganese (mg/kg)	460	1100	2,140	523	829	494 [542]	596	861	762 J	605	680	682 J	107	650 [647]	505
Mercury (mg/kg)	0.2	1.3	0.12	0.04	0.05 U	0.8 [0.58]	0.94	0.61	1 J	4.9 N	0.72 N	0.86 J	0.09 N	0.64 N [1.5 N]	3.5 N
Nickel (mg/kg)	16	50	29.3	17.4	22.1	24 [23.6]	28.3	25.6	30.2 J	42.2	27.3	31.4 J	12.5	32.2 [35.3]	26.3
Zinc (mg/kg)	120	270	90.2	54.5	66	123 [115]	169	142	186 J	352	166	188 J	76.1	231 [251]	213

Sediment Remedial Investigation Report Former General Motors North Tarrytown Assembly Plant Sleepy Hollow, New York

Source	LEL	SEL	GM, 2004	GM, 2004	GM, 2004	GM, 2004	GM, 2004	GM, 2004							
Sample ID			SED1C	SED2C	SED3C	SED4C	SED5C	SED6C	SED7C	SED8C	SED9C	SED10C	SED11C	SED12C	SED13C
Date			7/7/04	7/7/04	7/7/04	7/7/04	7/7/04	7/8/04	7/8/04	7/8/04	7/8/04	7/8/04	7/8/04	7/8/04	7/8/04
			Near-Site	Near-Site	Near-Site	Near-Site	Near-Site	Near-Site							
Depth (inches)			6-12	6-12	6-12	6-12	6-12	6-12	6-12	6-12	6-12	6-12	6-12	6-12	6-12
Solids (%)			53.5	55.9	43.1	44.2	50.7	56.5	55	49.6 [48.7]	48.8	65.8	55.8	60.5	49.7
TOC (mg/kg)			23,000	19,600	22,300 J	27,000 J	21,500	17,300	21,600	21,500 [20,000 J]	25,300 J	13,900	19,000	18,000	20,500
Total PCB (mg/kg)	0.07	5.3	0.79	0.92	0.45 J	0.49 J	0.13 U	0.12 U	0.5 J	0.78 J	0.38 J	4.81	0.12 U	0.11 U	0.73
Total PAH (mg/kg)	4.0	100	10.6 J	9.18 J	1.03 J	4.63 J	16.2 J	9.32 J	6.449 J	4.49 J [4.168 J]	2.976 J	8.48 J	6.69 J	9.52 J	6.08
Antimony (mg/kg)	2.0	25	2.7 B	3.6 B	2.1 J	1.9 J	1.6 B	1.2 B	0.58 UJ	0.64 UJ [0.65 UJ]	0.66 UJ	21.3	1 U	1 B	1.15 UJ
Arsenic (mg/kg)	6.0	33	15.4	14.2	10.6 J	12.2 J	17.8	15.1	15.7	9.6 [8.9 J]	7.6 J	9.6	14.9	15	20.1
Barium (mg/kg)	NA	NA	129	115	85.1 J	96.3 J	70.2	68	101	174 [93.7 J]	76 J	6,620	64.4	57.2	113
Cadmium (mg/kg)	0.6	9.0	2 J	3 J	1.1 J	1.5 J	0.75 J	0.8 J	0.34 J	0.93 UJ [0.99 UJ]	0.98 UJ	0.5 J	0.68 J	0.72 J	0.44 UJ
Chromium (mg/kg)	26	110	95.7	94.5	64.9 J	75 J	42.8	40.2	92.9	63.9 [59.3 J]	53.1 J	141	38.9	34.9	98.5
Copper (mg/kg)	16	110	131	119	70 J	80.1 J	107	88.6	142	70.7 [65.5 J]	57.2 J	65.8	89.3	72.3	172
Lead (mg/kg)	31	110	176	126	75.5 J	84.1 J	89.4	79	132	80.2 [78 J]	67.8 J	938	77.7	67.8	145
Manganese (mg/kg)	460	1100	476	653	1,160 J	1,310 J	540	450	562	1,140 [1,070 J]	1,070 J	462	463	447	596
Mercury (mg/kg)	0.2	1.3	2.7	2.5	0.82 J	0.85 J	1.6	0.9	3.2	0.86 [0.61 J]	0.57 J	0.59	1.8	0.69	2.1
Nickel (mg/kg)	16	50	31.8	35.3	34.4 J	37.5 J	30.1	25.9	32.6	32.6 [32.1 J]	29.1 J	36.6	28.7	24.6	34.9
Zinc (mg/kg)	120	270	252 J	246 J	198 J	225 J	221 J	178 J	256	189 [177 J]	169 J	901	195 J	163 J	262

See Notes on Page 21.

Source	LEL	SEL	GM, 2004	GM, 2004	GM, 2004	GM, 2004	GM, 2004	GM, 2004	GM, 2004	GM, 2004				
Sample ID			SED14C	SED15C	SED16C	SED17C	SED18C	SED19C	SED20C	SED21C	SED22C	SED23C	SED24C	SED25C
Date			7/9/04	7/9/04	7/12/04	7/12/04	7/9/04	7/9/04	7/12/04	7/9/04	7/9/04	7/12/04	7/12/04	7/12/04
			Near-Site	Near-Site	Near-Site	Near-Site	Near-Site	Near-Site	Near-Site	Near-Site	Near-Site	Near-Site	Near-Site	Near-Site
Depth (inches)			6-12	6-12	6-12	6-12	6-12	6-12	6-12	6-12	6-12	6-12	6-12	6-12
Solids (%)			46.3	41.1	55.3	51.4	49.5 [49.3]	46 [44.3]	48.3	48.4	56.7	56.3	63.6 [62.4]	50
TOC (mg/kg)			27,600 J	27,200 J	24,600	34,800	5,200 J [22,100	25,000 J [27,000 J	26,600 J	29,200 J	14,200	12,800	11,700 [11,900]	29,600
Total PCB (mg/kg)	0.07	5.3	0.8 J	0.84 J	0.12 U	0.32	1 J [1.35 J]	0.55 J [0.74 J]	0.45 J	0.42 J	0.091	0.12 U	0.11 U [0.11 U]	2.69
Total PAH (mg/kg)	4.0	100	4.43 J	5.991 J	10.4 J	6.39 J	4.52 J [3.55 J]	2.8 J [5.29 J]	5.87 J	6.12 J	0.137 J	0.59 U	0.52 U [0.53 U]	5.451 J
Antimony (mg/kg)	2.0	25	1.3 UJ	1.46 UJ	1.1 B	2.8 B	2.7 J [3.1 J]	2.7 J [2.5 J]	2.4 J	3.6 J	1 U	1 U	0.9 UJ [0.91 UJ]	1.1 UJ
Arsenic (mg/kg)	6.0	33	9.9 J	10.3 J	23	21.7	10.7 J [11.1 J]	10.1 J [10.8 J]	27 J	21.6 J	11.3	8.3	6.5 [9.4]	15.8
Barium (mg/kg)	NA	NA	92.5 J	108 J	83.9	102	125 J [164 J]	206 J [249 J]	116 J	109 J	52.9	40.3	34.9 [34]	129
Cadmium (mg/kg)	0.6	9.0	0.04 UJ	0.05 UJ	0.83 J	1.6 J	2 J [2 J]	1.2 J [1.2 J]	1.4 J	3 J	0.91 J	0.48 J	0.41 UJ [0.17 UJ]	4 J
Chromium (mg/kg)	26	110	75.6 J	69.6 J	46.2	104	93.1 J [95.1 J]	66 J [70.2 J]	88.3 J	124 J	36.1	23.3	22.4 [24]	144
Copper (mg/kg)	16	110	84 J	73.3 J	114	172	94.7 J [102 J]	69 J [72.2 J]	176 J	165 J	33.3	14	11.5 [13.3]	162
Lead (mg/kg)	31	110	88.7 J	89.7 J	89.1	126	115 J [117 J]	85.5 J [95.8 J]	137 J	142 J	28.1	12	9.7 [11.4]	198
Manganese (mg/kg)	460	1100	941 J	1,410 J	802	740	696 J [711 J]	1,020 J [1,100 J]	960 J	1,200 J	755	688	654 [685]	921
Mercury (mg/kg)	0.2	1.3	1.2 J	0.74 J	1	1.2	1.6 J [1.6 J]	0.84 J [0.79 J]	1.4 J	5 J	0.21	0.06 U	0.05 U [0.05 U]	5.3
Nickel (mg/kg)	16	50	34.5 J	37.5 J	30	34.3	35 J [35.8 J]	32 J [32.9 J]	37.2 J	38.8 J	29	23.5	21.6 [23.6]	39.7
Zinc (mg/kg)	120	270	201 J	215 J	212 J	275 J	237 J [228 J]	230 J [235 J]	270 J	320 J	106 J	72.7 J	64 J [69 J]	324 J

Sediment Remedial Investigation Report Former General Motors North Tarrytown Assembly Plant Sleepy Hollow, New York

Source	LEL	SEL	GM, 2004	GM, 2004	GM, 2004	GM, 2004	GM, 2004	GM, 2004	GM, 2004	GM, 2004				
Sample ID			SED26C	SED27C	SED28C	SED29C	SED30C	SED31C	SED32C	SED33C	SED34C	SED35C	SED36C	SED37C
Date			7/13/04	7/13/04	7/13/04	7/13/04	7/13/04	7/13/04	7/13/04	7/14/04	7/14/04	7/14/04	7/14/04	7/14/04
			Near-Site	Near-Site	Near-Site	Near-Site	Near-Site	Near-Site	Near-Site	Near-Site	Near-Site	Near-Site	Near-Site	Near-Site
Depth (inches)			6-12	6-12	6-12	6-12	6-12	6-12	6-12	6-12	6-12	6-12	6-12	6-12
Solids (%)			78.1	51.9	61.8	63.6	67.2 [66]	54.7	44.1	44.6	57.6	46	48 [51.2]	81.1
TOC (mg/kg)			2,580	16,800	13,200	14,300	15,300 [19,400]	22,500	26,400 J	24,800 J	14,400	26,600 J	25,400 J [23,700	788
Total PCB (mg/kg)	0.07	5.3	0.086 UJ	0.13 U	0.11 UJ	0.11 UJ	0.194 J [0.14]	1.27	0.51 J	0.64 J	0.068	1.01 J	4.18 J [1.91 J]	0.083 U
Total PAH (mg/kg)	4.0	100	0.42 U	0.64 U	0.53 U	0.52 U	2.706 J [0.767 J]	5.08 J	3.84 J	3 J	0.782 J	4.72 J	3.6 J [2.27 J]	0.81 U
Antimony (mg/kg)	2.0	25	0.9 UJ	1.1 U	1.2 UJ	1.2 UJ	1.1 UJ [0.47 UJ]	2.6 B	1.6 J	2.7 J	0.56 UJ	4.3 J	4.4 J [3.9 B]	4 J
Arsenic (mg/kg)	6.0	33	4.8	12.8	6.1	9.6	11.2 [11.2]	9.9	12.4 J	13 J	13.2	13.2 J	11.4 J [10.4]	2.3 J
Barium (mg/kg)	NA	NA	17.5	51.8	36.5	32.6	57 [57.9]	363	81.9 J	110 J	51.3	148 J	206 J [212]	256
Cadmium (mg/kg)	0.6	9.0	0.51 UJ	0.59 J	0.52 UJ	0.58 UJ	0.34 UJ [0.03 UJ]	2 J	1.2 J	1.6 J	0.08 UJ	2.3 J	2.7 J [2.7 J]	0.1 UJ
Chromium (mg/kg)	26	110	11.5	27.5	24.9	22.5	32.6 [29.8]	79	70.6 J	83.7 J	28.6	106 J	107 J [106]	17.4
Copper (mg/kg)	16	110	11.2	18.3	13.7	13.2	39.4 [30.1]	78.8	81.5 J	101 J	24.9	99.6 J	95.1 J [93.6]	16.5
Lead (mg/kg)	31	110	6.1 U	17.1	10.5	10.4	46.2 [42.8]	110	82.1 J	94.5 J	25.9	117 J	123 J [120]	127
Manganese (mg/kg)	460	1100	272	710	714	825	545 [539]	572	1,160 J	998 J	571	864 J	585 J [548]	157
Mercury (mg/kg)	0.2	1.3	0.04 U	0.06	0.05 U	0.05 U	0.59 [0.46]	2	0.98 J	1.1 J	0.54 N	1.2 J	1.3 J [1.4]	0.07 N
Nickel (mg/kg)	16	50	15.8	27.9	23.1	22.5	24.6 [24.8]	29.8	33.1 J	34.3 J	27.4	39.9 J	36.4 J [34.1]	15
Zinc (mg/kg)	120	270	45.2	87 J	69.4	67.4	106 [99.2]	226 J	194 J	215 J	92.7	242 J	245 J [237 J]	111

See Notes on Page 21.

Sediment Remedial Investigation Report Former General Motors North Tarrytown Assembly Plant Sleepy Hollow, New York

Source	LEL	SEL	GM, 2004	GM, 2004	Exponent, 1997	Exponent, 1997	Exponent, 1997	Exponent, 1997	Exponent, 1997	Exponent, 1997	Exponent, 1997
Sample ID			SED38C	SED39C	T02A	T02B	T02C	T02D	T02E	T03A	T03B
Date			7/14/04	7/14/04	7/15/97	7/15/97	7/15/97	7/15/97	7/15/97	7/15/97	7/15/97
			Near-Site	Near-Site	Near-Site	Near-Site	Near-Site	Near-Site	Near-Site	Near-Site	Near-Site
Depth (inches)			6-12	6-12	0-2	0-2	0-2	0-2	0-2	0-2	0-2
Solids (%)			57.8 [58.8]	74.6							
TOC (mg/kg)			14,300 [15,900]	6,240							
Total PCB (mg/kg)	0.07	5.3	2.8 [3.03 J]	0.096							
Total PAH (mg/kg)	4.0	100	2.401 J [2.946 J]	1.62 J							
Antimony (mg/kg)	2.0	25	1.3 J [0.68 J]	3.4 B	1.61 UNJ	1.91 UNJ	1.61 UNJ	1.85 UNJ [1.9 UNJ]	2.08 UNJ	1.56 UNJ	1.75 UNJ
Arsenic (mg/kg)	6.0	33	11.5 [11.7]	6.1	6.63	15.2	8.6	6.3 [6.43]	8.02	6.51	7.32
Barium (mg/kg)	NA	NA	260 [180]	92	28.9	57.4	34.3	42.2 [45]	47.9	27.6	36.3
Cadmium (mg/kg)	0.6	9.0	1.9 J [1.1 J]	1.5 J	1.86	3.1	2.12	2.39 [2.58]	2.67	1.93	1.98
Chromium (mg/kg)	26	110	102 [76.9]	31.8	24.6	49.9	26	51.5 [53.7]	53.3	23.2	27.5
Copper (mg/kg)	16	110	91.5 [67.5]	28.2	18.6 U	95.4	24.9 U	60.4 J [64.7 J]	61.7 J	18.7 U	17.3 U
Lead (mg/kg)	31	110	138 [99]	116	16.1	87.2	30.2	54.1 [58.6]	61	15.6	14
Manganese (mg/kg)	460	1100	642 [644]	270	445	384	404	393 [552]	410	480	538
Mercury (mg/kg)	0.2	1.3	3.4 N [0.87 N]	0.42	0.241 U	1.75	0.475	0.552 [0.565]	0.571	0.234 U	0.263 U
Nickel (mg/kg)	16	50	35.3 [32.1]	18.6	18.8	30	21.2	24.1 [25.2]	26.5	19.7	22.8
Zinc (mg/kg)	120	270	243 [191]	136 J	69.5	172	77.5	125 [135]	139	68	69

See Notes on Page 21.

Source	LEL	SEL	Exponent, 1997	Exponent, 1997	Exponent, 1997	Exponent, 1997	Exponent, 1997	Exponent, 1997	Exponent, 1997	Exponent, 1997	Exponent, 1997
Sample ID			T03C	T03D	T03E	T03F ^a	T04C	T04D	T04E	T04F	T04G
Date			7/15/97	7/15/97	7/15/97	7/15/97	7/15/97	7/15/97	7/15/97	7/15/97	7/15/97
			Near-Site	Near-Site	Near-Site	Near-Site	Near-Site	Near-Site	Near-Site	Near-Site	Near-Site
Depth (inches)			0-2	0-2	0-2	0-2	0-2	0-2	0-2	0-2	0-2
Solids (%)											
TOC (mg/kg)											
Total PCB (mg/kg)	0.07	5.3									
Total PAH (mg/kg)	4.0	100									
Antimony (mg/kg)	2.0	25	2.23 UNJ	1.72 UNJ	1.91 UNJ	2.35 UNJ	14.5 UNJ	14.7 UNJ	10.5 UNJ	11.2 UNJ	11.3 UNJ
Arsenic (mg/kg)	6.0	33	7.28	5.12	7.76	6.68	10.8	8.26	3.88	12.1	13.3
Barium (mg/kg)	NA	NA	54	43.1	35.9	54.6	115 *	87.3 *	114 *	44.1 *	52.7 *
Cadmium (mg/kg)	0.6	9.0	2.99	1.69	2.31	2.47	4.33	3.41	2.06	2.5	2.77
Chromium (mg/kg)	26	110	55.1	32.1	47	50.6	109	84.8	41.1	45.3	70.1
Copper (mg/kg)	16	110	67.2 J	37.3 U	58.7 J	60.2 U	131	81.1	40.8 J	77.3	110
Lead (mg/kg)	31	110	62.9	36.8	55.3	54.8	192 *NJ	94.1 *NJ	37.6 *NJ	69.1 *NJ	83.2 *NJ
Manganese (mg/kg)	460	1100	531	455	338	600	426	539	383	439	380
Mercury (mg/kg)	0.2	1.3	0.712	0.359	1.48	0.642	2.47	0.934	0.694	1.36	1.61
Nickel (mg/kg)	16	50	28.1	18.4	23.5	26.8	33.2	33.3	19.2	25	26.6
Zinc (mg/kg)	120	270	153	92.4	126	142	262	191	102	149	173

Source	LEL	SEL	Exponent, 1997	Exponent, 1997	Exponent, 1997	Exponent, 1997	Exponent, 1997	Exponent, 1997	Exponent, 1997	Exponent, 1997	Exponent, 1997
Sample ID			T04H	T04I ^b	T05A	T05B	T05C	T05D	T05E	T05F	T05G
Date			7/15/97	7/15/97	7/15/97	7/15/97	7/15/97	7/15/97	7/15/97	7/15/97	7/15/97
			Near-Site	Near-Site	Near-Site	Near-Site	Near-Site	Near-Site	Near-Site	Near-Site	Near-Site
Depth (inches)			0-2	0-2	0-2	0-2	0-2	0-2	0-2	0-2	0-2
Solids (%)											
TOC (mg/kg)											
Total PCB (mg/kg)	0.07	5.3									
Total PAH (mg/kg)	4.0	100									
Antimony (mg/kg)	2.0	25	10.2 UNJ	14.7 UNJ	16 UNJ	15.3 UNJ	16.7 UNJ	16.9 UNJ	11.2 UNJ	13 UNJ	12.7 UNJ
Arsenic (mg/kg)	6.0	33	12.9	8.92	5.92	6.93	7.72	7.38	4.44	12.7	11.9
Barium (mg/kg)	NA	NA	30 *	66.3 *	62.9 *	56.8 *	62.8	46.5	76	47.8	57.7
Cadmium (mg/kg)	0.6	9.0	2.29	2.89	2.57	2.49	3.97	3.46	2.51	3.12	3.62
Chromium (mg/kg)	26	110	42.3	93.6	56	54.2	60.8	58.3	49.4	45.5	75.3
Copper (mg/kg)	16	110	50.3 J	96.6	55.5 J	54.7 J	60.6 J	60.8 J	47.2 J	69.3	117
Lead (mg/kg)	31	110	64 *NJ	109 *NJ	58.7 *NJ	57.3 *NJ	69.7	81.4	55.2	80.5	94.3
Manganese (mg/kg)	460	1100	345	469	901	816	986	944	337	439	533
Mercury (mg/kg)	0.2	1.3	1.15	1.15	0.931	1.09	0.833	1.08	0.785	1.1	1.51
Nickel (mg/kg)	16	50	23.4	31.3	29.1	28.4	35.6	32.7	22.5	28.4	31.7
Zinc (mg/kg)	120	270	116	187	153	156	183	173	130	168	192

Sediment Remedial Investigation Report Former General Motors North Tarrytown Assembly Plant Sleepy Hollow, New York

Source	LEL	SEL	Exponent, 1997	Exponent, 1997	Exponent, 1997					
Sample ID			T05H	T05I	T06A	T06B	T06C	T06D	T06E	T06F
Date			7/15/97	7/15/97	7/15/97	7/15/97	7/15/97	7/15/97	7/15/97	7/15/97
			Near-Site	Near-Site	Near-Site	Near-Site	Near-Site	Near-Site	Near-Site	Near-Site
Depth (inches)			0-2	0-2	0-2	0-2	0-2	0-2	0-2	0-2
Solids (%)										
TOC (mg/kg)										
Total PCB (mg/kg)	0.07	5.3								
Total PAH (mg/kg)	4.0	100								
Antimony (mg/kg)	2.0	25	12 UNJ	10.3 UNJ	9.38 UNJ	10.9 UNJ	10.6 UNJ	10.6 UNJ [10.6 UNJ]	16.8 UNJ	12.1 UNJ
Arsenic (mg/kg)	6.0	33	7.31	8.06	5.45	6.44	5.46	5.01 [4.84]	7.17	7.71
Barium (mg/kg)	NA	NA	32.5	25.2	148	100	82.9	67.6 [75.3]	55.5	265
Cadmium (mg/kg)	0.6	9.0	3.19	2.57	2.75	3.39	2.96	2.99 [2.95]	3.61	4.17
Chromium (mg/kg)	26	110	47.4	32.4	39.4	42.9	41.2	46.9 [47.7]	56.9	79.8
Copper (mg/kg)	16	110	54.8 J	31.9 J	47.8 J	59.3	48.9 J	59.3 J [58]	58.3 J	81.8
Lead (mg/kg)	31	110	61.2	37	132	86.3	66.2	63 [61.7]	67.8	115
Manganese (mg/kg)	460	1100	468	439	297	750	423	343 [334]	1,030	431
Mercury (mg/kg)	0.2	1.3	0.753	0.628	1.53	1.31	0.891	0.788 [0.813]	0.692	2.23
Nickel (mg/kg)	16	50	29.1	23	18.3	23.7	24.3	25.8 [24.2]	33.9	30.2
Zinc (mg/kg)	120	270	130	90.6	192	190	153	148 [145]	173	202

Source	LEL	SEL	Exponent, 1997	Exponent, 1997	Exponent, 1997	Exponent, 1997	Exponent, 1997	Exponent, 1997	Exponent, 1997	Exponent, 1997	Exponent, 1997
Sample ID			T06G	T06H	T06I	T06K ^c	T07A	T07B	T07C	T07D	T07E
Date			7/15/97	7/15/97	7/15/97	7/15/97	7/15/97	7/15/97	7/15/97	7/15/97	7/15/97
			Near-Site	Near-Site	Near-Site	Near-Site	Near-Site	Near-Site	Near-Site	Near-Site	Near-Site
Depth (inches)			0-2	0-2	0-2	0-2	0-2	0-2	0-2	0-2	0-2
Solids (%)											
TOC (mg/kg)											
Total PCB (mg/kg)	0.07	5.3									
Total PAH (mg/kg)	4.0	100									
Antimony (mg/kg)	2.0	25	11.7 UNJ	11.2 UNJ	14.2 UNJ	12 UNJ	10.3 NJ	1.98 UNJ	2.77 UNJ	3.05 UNJ	2.14 UNJ
Arsenic (mg/kg)	6.0	33	10.9	15.6	4.17	7.19	17.7 *NJ	7.33	8.95	9.39	8.44
Barium (mg/kg)	NA	NA	56.1	47.2	48.1	144	830 *NJ	477	93.1	64	170
Cadmium (mg/kg)	0.6	9.0	2.99	3.16	3.41	3.73	4.03 *NJ	2.26	2.62	2.56	2.7
Chromium (mg/kg)	26	110	41.7	38.7	53.3	72.7	90.7 *NJ	88.9	62	59.8	62.7
Copper (mg/kg)	16	110	66	67.3	52.4 J	70.3 J	146 *	74.5	74	65.2	71.5
Lead (mg/kg)	31	110	75.1	73.4	57.1	106	1,010 *	380	90.9	72.9	80.1
Manganese (mg/kg)	460	1100	454	533	607	416	350 *	483	978	1,080	630
Mercury (mg/kg)	0.2	1.3	0.833	0.833	0.668	1.5	0.19 U	0.315	0.734	0.576	0.814
Nickel (mg/kg)	16	50	27.4	28.4	32	32.7	34.3 *	23.2	33.2	33.5	31.5
Zinc (mg/kg)	120	270	158	161	151	179	374	257	216	184	187

Sediment Remedial Investigation Report Former General Motors North Tarrytown Assembly Plant Sleepy Hollow, New York

Source	LEL	SEL	Exponent, 1997	Exponent, 1997	Exponent, 1997	Exponent, 1997				
Sample ID			T07F	T07G	T07H	T08A	T08B	T08C	T08D	T08E
Date			7/15/97	7/15/97	7/15/97	7/15/97	7/15/97	7/15/97	7/15/97	7/15/97
			Near-Site	Near-Site	Near-Site	Near-Site	Near-Site	Near-Site	Near-Site	Near-Site
Depth (inches)			0-2	0-2	0-2	0-2	0-2	0-2	0-2	0-2
Solids (%)										
TOC (mg/kg)										
Total PCB (mg/kg)	0.07	5.3								
Total PAH (mg/kg)	4.0	100								
Antimony (mg/kg)	2.0	25	1.66 UNJ	1.69 UNJ	2.14 UNJ	1.61 UNJ	1.46 UNJ [1.42 UNJ]	1.63 UNJ	1.37 UNJ	2.44 UNJ
Arsenic (mg/kg)	6.0	33	6.31	11.2	8.57	6.8	4.41 [3.97]	4.46	3.01	13.4
Barium (mg/kg)	NA	NA	42.4	46.1	45.7	151	83.3 [87]	244	54.1	69.9
Cadmium (mg/kg)	0.6	9.0	1.5	2.05	2.33	2.16	1.57 [1.52]	1.74	1.16	4.28
Chromium (mg/kg)	26	110	29.6	45.6	53.6	34.9	22.9 [24.5]	41	13.2	80.9
Copper (mg/kg)	16	110	32.7	77.6	61.3	44.3	24.7 [24.1]	51.1	14.5	77.3
Lead (mg/kg)	31	110	34.7	67.5	65.4	72.5	38.6 [38.2]	118	27.2	117
Manganese (mg/kg)	460	1100	553	386	419	390	341 [378]	397	321	809
Mercury (mg/kg)	0.2	1.3	0.412	0.9	0.799	0.419	0.237 [0.259]	0.393	0.205 U	1.16
Nickel (mg/kg)	16	50	18.1	23.6	28.2	27.9	17.6 [18.1]	29.2	21.4	35.7
Zinc (mg/kg)	120	270	93.7	146	148	125	94.3 [92.4]	189	81.3	174

Source	LEL	SEL	Exponent, 1997	Exponent, 1997	Exponent, 1997	Exponent, 1997	Exponent, 1997	Exponent, 1997	Exponent, 1997	Exponent, 1997	Exponent, 1997
Sample ID			T08F	T08G	T08I ^d	T09A	T09B	T09C	T09D	T09E	T09F
Date			7/15/97	7/15/97	7/15/97	7/15/97	7/15/97	7/15/97	7/15/97	7/15/97	7/15/97
			Near-Site	Near-Site	Near-Site	Near-Site	Near-Site	Near-Site	Near-Site	Near-Site	Near-Site
Depth (inches)			0-2	0-2	0-2	0-2	0-2	0-2	0-2	0-2	0-2
Solids (%)											
TOC (mg/kg)											
Total PCB (mg/kg)	0.07	5.3									
Total PAH (mg/kg)	4.0	100									
Antimony (mg/kg)	2.0	25	1.96 UNJ	2.12 UNJ	13.3 UNJ	1.96 UNJ	1.86 UNJ	2.21 UNJ	2.23 UNJ	11.4 UNJ	13.4 UNJ
Arsenic (mg/kg)	6.0	33	7.14	8.85	5.44	9.67	9.76	8.19	9.17	5.12	7.11
Barium (mg/kg)	NA	NA	43.8	39.9	54	41.8	43.4	223	101	49.1 *	43 *
Cadmium (mg/kg)	0.6	9.0	2.09	2.06	3.74	1.76	1.62	3.25	3.44	2.38	2.73
Chromium (mg/kg)	26	110	40.7	31.4	44.5	33.8	29.3	77.5	66.5	52.2	34.2 J
Copper (mg/kg)	16	110	45.2	30.4	41.2	36	33.2	79.2	86.6	44.6 J	26.2 U
Lead (mg/kg)	31	110	48.5	48.4	51.3	39.7	33	126	72.3	63.8 *NJ	35.6 *NJ
Manganese (mg/kg)	460	1100	452	556	684	466	505	625	645	404	577
Mercury (mg/kg)	0.2	1.3	0.515	0.318 U	0.403	0.413	0.354	0.892	0.973	0.556	0.336 U
Nickel (mg/kg)	16	50	25.8	28.9	31.6	22.4	17.6	31.8	29.2	21.7	28.2
Zinc (mg/kg)	120	270	120	103	135	105	86.1	203	169	110	89.3

Sediment Remedial Investigation Report Former General Motors North Tarrytown Assembly Plant Sleepy Hollow, New York

Source	LEL	SEL	Exponent, 1997							
Sample ID			T09G	T10A	T10B	T10C	T10D	T10E	T10F	T10G
Date			7/15/97	7/15/97	7/15/97	7/15/97	7/15/97	7/15/97	7/15/97	7/15/97
			Near-Site							
Depth (inches)			0-2	0-2	0-2	0-2	0-2	0-2	0-2	0-2
Solids (%)										
TOC (mg/kg)										
Total PCB (mg/kg)	0.07	5.3								
Total PAH (mg/kg)	4.0	100								
Antimony (mg/kg)	2.0	25	13.2 UNJ	7.45 UNJ	7.03 UNJ	7.6 UNJ	7.99 UNJ	16.3 UNJ	15 UNJ	12.8 UNJ [12.8 UNJ]
Arsenic (mg/kg)	6.0	33	7.46	2.14	2.56	2.02	2.05	9.56	7.82	7.59 [6.93]
Barium (mg/kg)	NA	NA	50.3 *	38.9 *	140 *	137 *	17.4 *	62.4 *	58 *	39.4 * [41.4 *]
Cadmium (mg/kg)	0.6	9.0	4.19	0.796	1.45	0.951	0.752	2.59	2.98	2.03 [1.88]
Chromium (mg/kg)	26	110	83.2	13.4 J	15.8 J	17.1 J	14.4 J	58.9	70.5	36.2 J [33 J]
Copper (mg/kg)	16	110	55 J	9.57 U	26 J	12 U	8.03 U	57.8 J	66 J	31.1 U [27.3 U]
Lead (mg/kg)	31	110	73.5 *NJ	35 *NJ	49.4 *NJ	35.4 *NJ	30.6 *NJ	58.3 *NJ	73.5 *NJ	31.3 *NJ [27.7 *NJ]
Manganese (mg/kg)	460	1100	486	161	789	136	164	894	595	490 [435]
Mercury (mg/kg)	0.2	1.3	0.616	0.186 U	0.176 U	0.19 U	0.2 U	0.545	0.45	0.32 U [0.32 U]
Nickel (mg/kg)	16	50	28.3	9.98	19.2	13.6	12.9	29.2	32.5	23 [22]
Zinc (mg/kg)	120	270	157	76.5	91.8	82.1	68.3	155	179	98.3 [91.5]

Source	LEL	SEL	Exponent, 1997								
Sample ID			T11C	T11D	T11E	T11F	T11G	T11H	T12A	T12B	T12C
Date			7/15/97	7/15/97	7/15/97	7/15/97	7/15/97	7/15/97	7/15/97	7/15/97	7/15/97
			Near-Site								
Depth (inches)			0-2	0-2	0-2	0-2	0-2	0-2	0-2	0-2	0-2
Solids (%)											
TOC (mg/kg)											
Total PCB (mg/kg)	0.07	5.3									
Total PAH (mg/kg)	4.0	100									
Antimony (mg/kg)	2.0	25	8.3 UNJ	10.2 UNJ	15.7 UNJ	13.4 UNJ	9.19 UNJ	6.02 UNJ	8.02 UNJ	8.58 UNJ	13.8 UNJ
Arsenic (mg/kg)	6.0	33	3.24	4.92	8.12	6.38	4.24	4.79	3.25 NJ	3.83 NJ	14.9
Barium (mg/kg)	NA	NA	38.5	65.1	55.4	50	30.5	20.7	17.5	26.6	67
Cadmium (mg/kg)	0.6	9.0	1.51	2.06	3.13	2.54	1.91	1.45	0.944	1.23	4.15
Chromium (mg/kg)	26	110	20.5	37.6	64.8	38.8	33.2	22.3	16.7	24.3	57.1
Copper (mg/kg)	16	110	19.2 U	34.2 J	64.5 J	31.3 U	34.2 J	7.3	10.7	16.5	61.5
Lead (mg/kg)	31	110	20.7	42.2	67.4	32.1	36.3	5.89	16.8	21.2	60.1
Manganese (mg/kg)	460	1100	353	388	945	893	291	104	295	365	789
Mercury (mg/kg)	0.2	1.3	0.491	0.532 NJ	1.09 NJ	0.688 NJ	0.456 NJ	0.151 U	0.201 U	0.215 U	1.11 NJ
Nickel (mg/kg)	16	50	13.7	18.1	29.5	25.4	18.1	19.7	12.2	14.6	34.4
Zinc (mg/kg)	120	270	59.5 J	100 J	159 J	108 J	89.9 J	37.1 J	54.1 J	65.8 J	153 J

Sediment Remedial Investigation Report Former General Motors North Tarrytown Assembly Plant Sleepy Hollow, New York

Source	LEL	SEL	Exponent, 1997						
Sample ID			T12D	T12E	T12F	T13A	T13B	T13C	T13D
Date			7/15/97	7/15/97	7/15/97	7/15/97	7/15/97	7/15/97	7/15/97
			Near-Site						
Depth (inches)			0-2	0-2	0-2	0-2	0-2	0-2	0-2
Solids (%)									
TOC (mg/kg)									
Total PCB (mg/kg)	0.07	5.3							
Total PAH (mg/kg)	4.0	100							
Antimony (mg/kg)	2.0	25	11.3 UNJ	13.5 UNJ	6.02 UNJ	12.4 UNJ	12.8 UNJ	14 UNJ	13.5 UNJ
Arsenic (mg/kg)	6.0	33	4.36	6.05	5.43	4.73 NJ	7.52 NJ	6.7	5.81
Barium (mg/kg)	NA	NA	58.3	55.6	20.4	52.5	58.5	56.7	57.4
Cadmium (mg/kg)	0.6	9.0	2.57	2.83	1.52	1.96	2.18	3.26	2.87
Chromium (mg/kg)	26	110	48.3	51.1	23	41.3	42.7	71.2	48.2
Copper (mg/kg)	16	110	47.5	47.1	7.13	36.4	33.3	67	48.7
Lead (mg/kg)	31	110	49.8	49.8	5.71	42.1	37.8	73.3	52.9
Manganese (mg/kg)	460	1100	415	558	105	705	650	514	675
Mercury (mg/kg)	0.2	1.3	0.757 NJ	1.67 NJ	0.151 U	0.335	0.348	0.921 NJ	0.87 NJ
Nickel (mg/kg)	16	50	23.2	25.1	19.1	24.4	28	29.1	25.3
Zinc (mg/kg)	120	270	123 J	130 J	35.7 J	119 J	112 J	156 J	139 J

Sediment Remedial Investigation Report Former General Motors North Tarrytown Assembly Plant Sleepy Hollow, New York

Source	LEL	SEL	Exponent, 1997	Exponent, 1997
Sample ID			T13E	T13F ^e
Date			7/15/97	7/15/97
			Near-Site	Near-Site
Depth (inches)			0-2	0-2
Solids (%)				
TOC (mg/kg)				
Total PCB (mg/kg)	0.07	5.3		
Total PAH (mg/kg)	4.0	100		
Antimony (mg/kg)	2.0	25	12.3 UNJ	12.5 UNJ
Arsenic (mg/kg)	6.0	33	10.1	8.63 NJ
Barium (mg/kg)	NA	NA	51.2	42
Cadmium (mg/kg)	0.6	9.0	3.11	1.88
Chromium (mg/kg)	26	110	36.1	35.8
Copper (mg/kg)	16	110	30.3	30.6
Lead (mg/kg)	31	110	41.4	33.7
Manganese (mg/kg)	460	1100	576	545
Mercury (mg/kg)	0.2	1.3	0.434 NJ	0.441
Nickel (mg/kg)	16	50	29.5	23.7
Zinc (mg/kg)	120	270	103 J	95.8 J

TABLE 2 SEDIMENT DATA - NEAR-SITE LOCATIONS - 1997-2004 STUDY

Sediment Remedial Investigation Report Former General Motors North Tarrytown Assembly Plant Sleepy Hollow, New York

Notes:

1. Screening values for metals are the NYSDEC (1999) LELs and SELs.

2. Total PCB and PAH screening criteria are the LELs and SELs presented in Persaud et al. (1993)

LEL = Lowest Effect Level.

SEL = Severe Effect Level.

Bolded values exceed LEL.

Shaded values exceed SEL.

mg/kg = milligrams per kilogram (concentration in parts per million).

NA = not available.

- a Replicate for station T03D.
- b Replicate for station T04D.
- c Replicate for station T06F.
- d Replicate for station T08G.
- e Replicate for station T13B.

Data Qualifiers:

- B = For metals, indicates that the reported value was obtained from a reading that was less than the Contract Required Detection Limit (CRDL), but greater than or equal to the Instrument Detection Limit (IDL).
- J = Indicates an estimated value.
- N = Indicates that the spiked sample recovery is not within control limits.
- U = Indicates that the analyte was analyzed for but not detected.
- * = Duplicate relative percent difference outside limits.

Sediment Remedial Investigation Report Former General Motors North Tarrytown Assembly Plant Sleepy Hollow, New York

Source	LEL	SEL	GM, 2004	GM, 2004	GM, 2004	GM, 2004	GM, 2004	GM, 2004	GM, 2004	GM, 2004	GM, 2004	GM, 2004	GM, 2004	GM, 2004
Sample ID			SED 40A	SED 41A	SED 42A	SED 43A	SED 44A	SED 45A	SED 40B	SED 41B	SED 42B	SED 43B	SED 44B	SED 45B
Date			7/15/04	7/15/04	7/15/04	7/15/04	7/15/04	7/15/04	7/15/04	7/15/04	7/15/04	7/15/04	7/15/04	7/15/04
			Upstream	Upstream	Upstream	Upstream	Upstream	Upstream	Upstream	Upstream	Upstream	Upstream	Upstream	Upstream
Depth (inches)			0-2	0-2	0-2	0-2	0-2	0-2	2-6	2-6	2-6	2-6	2-6	2-6
Solids (%)			50.2	54.8 [53.3]	50.4	52.6	49.3	54.1	49.7	52.1 [52.5]	45.5	47.3	50	57.4
TOC (mg/kg)			33,000 J	10,000 J [13,600 J]	12,200 J	17,300 J	13,600 J	11,600 J	13,600 J	12,200 J [12,300 J]	16,400 J	18,100 J	13,300 J	14,300 J
Total PCB (mg/kg)	0.07	5.3	0.069	0.1 [0.075]	0.13 U	2.26 J	0.21 J	0.077	0.13 UJ	0.13 U [0.13 U]	0.15 UJ	2.94 J	0.13 U	0.12 U
Total PAH (mg/kg)	4.0	100	0.66 U	0.6 U [0.148 J]	0.65 U	1.94 J	0.856 J	0.265 J	0.66 UJ	0.63 U [0.63 U]	0.73 UJ	3.828 J	0.66 U	0.57 U
Antimony (mg/kg)	2.0	25	1 UJ	0.92 UJ [0.95 UJ]	0.97 UJ	0.95 UJ	0.99 UJ	0.94 UJ	0.98 UJ	0.96 UJ [0.93 UJ]	1.1 UJ	1.1 UJ	0.98 UJ	0.88 UJ
Arsenic (mg/kg)	6.0	33	8.7	7.9 [8]	8.7	8.9	8.4 J	9.4	9	8.3 [8.5]	9.4 J	12.4 J	8.8	8.1
Barium (mg/kg)	NA	NA	53	45.5 [43.4]	43	63.9	54.9 J	44.6	50.6	43.9 [40.7]	43.2 J	91.7 J	45.5	35.9
Cadmium (mg/kg)	0.6	9.0	0.32 J	0.28 J [0.24 J]	0.22 J	1.8 J	0.49 J	0.28 J	0.32 J	0.28 J [0.17 J]	0.18 J	2.9 J	0.39 J	0.23 J
Chromium (mg/kg)	26	110	32.2	28.1 [28.8]	26.7	68.7	36.8 J	27.4	30	29.5 [27.5]	27.4 J	116 J	27.5	23.8
Copper (mg/kg)	16	110	19.2	18.4 [18.1]	16.6	54.8	32.2 J	18.8	17.3	16 [15.5]	16.8 J	105 J	17.9	15
Lead (mg/kg)	31	110	16.9	18.4 [17.5]	14.1	71.8	32.7 J	16.7	14.4	14.4 [13.5]	14.1 J	160 J	15.6	12
Manganese (mg/kg)	460	1100	821	722 [714]	748	698	781 J	720	789	731 [717]	806 J	839 J	830	671
Mercury (mg/kg)	0.2	1.3	0.07	0.1 [0.09]	0.07	0.33	0.28 J	0.07	0.06 U	0.06 U [0.06 U]	0.07 UJ	1.6 J	0.06 U	0.06 U
Nickel (mg/kg)	16	50	30.9	25.2 [26.7]	28.1	31.5	27.7 J	27	30.6	29.1 [28.6]	29.2 J	39.4 J	28	26.5
Zinc (mg/kg)	120	270	96.3	87.3 [88.6]	86.4	164	117 J	87.6	90.9	88.8 [84.6]	87.6 J	272 J	87.6	77.2

Sediment Remedial Investigation Report Former General Motors North Tarrytown Assembly Plant Sleepy Hollow, New York

Source	LEL	SEL	GM, 2004	xponent, 199	xponent, 199	Exponent, 199					
Sample ID			SED 40C	SED 41C	SED 42C	SED 43C	SED 44C	SED 45C	T14A	T14B	T14C
Date			7/15/04 Upstream	7/15/04 Upstream	7/15/04 Upstream	7/15/04 Upstream	7/15/04 Upstream	7/15/04 Upstream	7/15/97 Upstream	7/15/97 Upstream	7/15/97 Upstream
Depth (inches)			6-12	6-12	6-12	6-12	6-12	6-12	0-2	0-2	0-2
Solids (%)			52.8	51.8 [52.2]	50.3	60.8	54.1	55.2			
TOC (mg/kg)			12,200 J	1,300 J [12,300	13,000 J	21,300 J	11,800 J	13,600 J			
Total PCB (mg/kg)	0.07	5.3	0.13 U	0.13 U [0.13 U]	0.13 U	0.45	0.12 U	0.12 U			
Total PAH (mg/kg)	4.0	100	0.63 U	0.64 U [0.63 U]	0.66 U	0.54 U	0.61 U	0.6 U			
Antimony (mg/kg)	2.0	25	0.93 UJ	.97 UJ [0.59 ՍԼ	0.97 UJ	0.8 UJ	0.94 UJ	0.88 UJ	8.85 U	8.65 U	11.7 U
Arsenic (mg/kg)	6.0	33	9.6	7.6 [8.7]	9.1	8.4	8.6	9.5	3.63 NJ	3.2 NJ	8.68
Barium (mg/kg)	NA	NA	43.4	41.2 [41.8]	41	53.5	38.2	39.5	48.1	41.8	50.1
Cadmium (mg/kg)	0.6	9.0	0.2 J	0.26 J [0.15 UJ]	0.24 J	0.86 J	0.28 J	0.31 J	1.47	1.44	2.64
Chromium (mg/kg)	26	110	26.5	25.6 [27.2]	25.9	42.5	23.4	25.6	28.8	28.2	40.6
Copper (mg/kg)	16	110	17	14.2 [15.1]	15.4	32.2	14.4	15.6	28	25.6	40.6
Lead (mg/kg)	31	110	13.2	12.3 [13.5]	13.1	42.5	11.5	12.7	28.2	26.8	38.6
Manganese (mg/kg)	460	1100	668	732 [736]	747	730	828	680	409	318	635
Mercury (mg/kg)	0.2	1.3	0.06 U	0.06 U [0.06 U]	0.06 U	0.27	0.06 U	0.06 U	0.437	0.308	0.854 NJ
Nickel (mg/kg)	16	50	28.4	25.7 [28.4]	28.4	26.7	24.5	27.8	20.1	18.3	26.8
Zinc (mg/kg)	120	270	85	77.9 [83.1]	85.8	112	72.9	81.5	95.6 J	90.3 J	117 J

Sediment Remedial Investigation Report Former General Motors North Tarrytown Assembly Plant Sleepy Hollow, New York

Source	LEL	SEL	Exponent, 1997							
Sample ID			T14D	T14E	T15A	T15B	T15C	T15D	T16A	T16B
Date			7/15/97 Upstream							
Depth (inches)			0-2	0-2	0-2	0-2	0-2	0-2	0-2	0-2
Solids (%)										
TOC (mg/kg)										
Total PCB (mg/kg)	0.07	5.3								
Total PAH (mg/kg)	4.0	100								
Antimony (mg/kg)	2.0	25	11.8 U	14.2 U [14.1 U]	13.1 U	13.4 U	11.8 U	13.5 U	12.5 U	13 U
Arsenic (mg/kg)	6.0	33	8	9.41 [8.22]	8.06 NJ	7.14 NJ	6.76 NJ	6.89 NJ	6.62 NJ	5.44 NJ
Barium (mg/kg)	NA	NA	47.2	62.6 [55.7]	56	54.6	40.1	40.5	46.8	43
Cadmium (mg/kg)	0.6	9.0	2.46	4.08 [3.47]	2.48	2.24	2.02	1.99	2.21	2.16
Chromium (mg/kg)	26	110	42.4	85.8 [75.6]	39.7	43.2	32.4	30.4	38.2	51.8
Copper (mg/kg)	16	110	60.1	102 [86.2]	24.4	31.3	20	18.1	30.5	46.2
Lead (mg/kg)	31	110	60.1	100 [84.3]	30.7	38.5	23.6	21.7	35.1	57.3
Manganese (mg/kg)	460	1100	485	514 [457]	887	839	835	892	760	590
Mercury (mg/kg)	0.2	1.3	0.727 NJ	1.77 NJ [1.54 NJ]	0.327 U	0.738	0.295 U	0.338 U	0.313 U	0.534
Nickel (mg/kg)	16	50	27.1	34.1 [29.5]	31.6	28.6	27.1	28.2	26.1	28.2
Zinc (mg/kg)	120	270	145 J	195 J [167 J]	115 J	124 J	93.3 J	87.8 J	116 J	147 J

Sediment Remedial Investigation Report Former General Motors North Tarrytown Assembly Plant Sleepy Hollow, New York

Source	LEL	SEL	Exponent, 1997	Versar	Versar	Versar	Versar				
Sample ID			T16C	T17A	T17B	T17C	T17D	202	207	208	209
Date			7/15/97	7/15/97	7/15/97	7/15/97	7/15/97	9/27/00	9/27/00	9/22/00	9/22/00
			Upstream	Upstream	Upstream	Upstream	Upstream	Upstream	Upstream	Upstream	Upstream
Depth (inches)			0-2	0-2	0-2	0-2	0-2	0-1	0-1	0-1	0-1
Solids (%)											
TOC (mg/kg)											
Total PCB (mg/kg)	0.07	5.3						0.043 U	0.028 U	0.033 U	0.035 U
Total PAH (mg/kg)	4.0	100						0.85 U	0.56 U	0.67 U	0.167
Antimony (mg/kg)	2.0	25	12.8 U	15.7 U	14.1 U	13.4 U	13.2 U				
Arsenic (mg/kg)	6.0	33	5.84 NJ	7.39 NJ	5.6 NJ	6.88 NJ	7.48 NJ	8.3	9.1	14.3	9.2
Barium (mg/kg)	NA	NA	50.5	90.9	56.5	51	52.6				
Cadmium (mg/kg)	0.6	9.0	2.47	3.97	2.68	2.29	3.03	0.2 U	0.134 U	0.55 B	0.09 U
Chromium (mg/kg)	26	110	59.1	57.4	53.2	43	61.2	45.2	20.8	51.7	47.6
Copper (mg/kg)	16	110	51.6	66.3	53.4	31.4	49.1	56.5	19.2	59	52.4
Lead (mg/kg)	31	110	62.5	72.1	56.7	38.8	66.4	55.1	18	59.7	53.9
Manganese (mg/kg)	460	1100	661	1,220	718	817	779				
Mercury (mg/kg)	0.2	1.3	0.819	1.7	0.621	0.644	0.686	0.38	0.11	0.42	0.08
Nickel (mg/kg)	16	50	29	33.9	29.2	28.5	31.8	23.7	17	26.5	24.4
Zinc (mg/kg)	120	270	156 J	190 J	159 J	121 J	156 J	148	67	145	134

Sediment Remedial Investigation Report Former General Motors North Tarrytown Assembly Plant Sleepy Hollow, New York

Source	LEL	SEL	Versar											
Sample ID			252	255	259	302	306	307	310	353	402	403	407	408
Date			9/22/00	9/22/20	9/22/20	9/22/20	9/22/20	9/25/00	9/25/00	9/22/20	9/21/00	9/22/20	9/21/00	9/21/00
			Upstream											
Depth (inches)			0-1	0-1	0-1	0-1	0-1	0-1	0-1	0-1	0-1	0-1	0-1	0-1
Solids (%)														
TOC (mg/kg)														
Total PCB (mg/kg)	0.07	5.3	0.035 U	0.037 U	0.033 U	0.034 U	0.028 U	0.036 U	0.03 U	0.026 U	0.023 U	0.027 U	0.042 U	0.041 U
Total PAH (mg/kg)	4.0	100	0.71 U	0.74 U	0.65 U	0.68 U	0.18	0.72 U	0.6 U	0.53 U	0.46 U	0.12	0.83 U	0.81 U
Antimony (mg/kg)	2.0	25												
Arsenic (mg/kg)	6.0	33	5.9	7.9	8.5	13.9	8.2	7.5	7.4	6.6	4.4	5.2	10.1	8.8
Barium (mg/kg)	NA	NA												
Cadmium (mg/kg)	0.6	9.0	0.086 U	0.18 B	0.078 U	0.082 U	0.07 U	0.176 U	0.142 U	0.064 U	0.056 U	0.064 U	0.102 U	0.096 U
Chromium (mg/kg)	26	110	45.5	52.9	34.6	42.6	24.5	85.9	19.9	30.4	14.9	29.5	60.8	32.3
Copper (mg/kg)	16	110	51.3	61.1	38.3	49.8	15.3	91.1	15.2	20.1	18.7	30.1	67.8	27.2
Lead (mg/kg)	31	110	50.5	64.8	37.9	52.2	12.2	105	14.2	19.7	22	30.5	69.7	27.3
Manganese (mg/kg)	460	1100												
Mercury (mg/kg)	0.2	1.3	0.04	1.2	0.28	0.21	0.05 B	1.1	0.03 U	0.33	0.16 N	0.22	0.57 N	0.12 N
Nickel (mg/kg)	16	50	24.3	24.2	19.9	24.2	22	25.5	17.5	22.7	10.1	18.1	29.7	25.2
Zinc (mg/kg)	120	270	140	147	105	126	72.5	189	63.2	74.1	76.9	108	177	101

Sediment Remedial Investigation Report Former General Motors North Tarrytown Assembly Plant Sleepy Hollow, New York

Source	LEL	SEL	Versar											
Sample ID			452	504	506	508	510	551	604	606	608	1074	1075	1076
Date			9/21/00	9/21/00	9/20/00	9/21/00	9/21/00	9/21/00	9/20/00	9/21/00	9/20/00	10/4/01	10/4/01	10/4/01
			Upstream											
Depth (inches)			0-1	0-1	0-1	0-1	0-1	0-1	0-1	0-1	0-1	0-1	0-1	0-1
Solids (%)														
TOC (mg/kg)														
Total PCB (mg/kg)	0.07	5.3	0.04 U	0.027 U	0.035 U	0.036 U	0.02 U	0.036 U	0.035 U	0.036 U	0.043 U	0.16	0.059	0.038 U
Total PAH (mg/kg)	4.0	100	0.79 U	0.55 U	0.69 U	0.72 U	0.41 U	0.07	0.69 U	0.72 U	0.148	1.261	0.59 U	0.26
Antimony (mg/kg)	2.0	25												
Arsenic (mg/kg)	6.0	33	11.9	3.2	21.4	16.1	0.96 B	7.1	7.5	12.9	9.8	2.9	3.6	6.4
Barium (mg/kg)	NA	NA												
Cadmium (mg/kg)	0.6	9.0	0.096 U	0.066 U	0.084 U	0.088 U	0.05 U	0.086 U	0.084 U	0.088 U	0.102 U	0.55 B	0.35 B	0.52 B
Chromium (mg/kg)	26	110	26.3	22.6	45.3	45.7	7.7	48.9	43.7	31	58.9	31.8	26.1	43.1
Copper (mg/kg)	16	110	19.9	26.3	56.6	71	7.8	52.2	47.7	29	65.3	37.4	34.8	49.5
Lead (mg/kg)	31	110	17.3	30.3	60.5	82.4	6.8	60.9	52.2	29.4	69.8	35.5	28.7	46.5
Manganese (mg/kg)	460	1100												
Mercury (mg/kg)	0.2	1.3	0.05 BN	1.2 N	0.43 N	0.5 N	0.31 N	0.37 N	0.23 N	0.21 N	0.4 N	0.15	0.25	0.32
Nickel (mg/kg)	16	50	26.2	13.3	28.3	28.3	6.2	24.4	23.9	24.1	31.5	17.8	15.6	24
Zinc (mg/kg)	120	270	86.4	80.7	157	194	28.7	155	156	102	194	100	97.4	132

Sediment Remedial Investigation Report Former General Motors North Tarrytown Assembly Plant Sleepy Hollow, New York

Source	LEL	SEL	Versar										
Sample ID			1077	1078	1079	1080	1081	1082	1083	1084	1085	1086	1087
Date			10/4/01	10/4/01	10/4/01	10/4/01	10/4/01	10/4/01	10/9/01	10/9/01	10/9/01	10/9/01	10/9/01
			Upstream										
Depth (inches)			0-1	0-1	0-1	0-1	0-1	0-1	0-1	0-1	0-1	0-1	0-1
Solids (%)													
TOC (mg/kg)													
Total PCB (mg/kg)	0.07	5.3	0.046 U	0.033 U	0.036 U	0.036 U	0.037 U	0.039 U	0.036 U	0.034 U	0.059	0.064 U	0.039 U
Total PAH (mg/kg)	4.0	100	0.144	0.66 U	0.72 U	0.72 U	0.74 U	0.16	0.72 U	0.468	0.88 U	0.21	0.21
Antimony (mg/kg)	2.0	25											
Arsenic (mg/kg)	6.0	33	9.7	5.9	8.4	7.3	6.8	8.9	12.6	10.6	13.6	16.2	18.8
Barium (mg/kg)	NA	NA											
Cadmium (mg/kg)	0.6	9.0	0.31 B	0.49 B	0.13 U	1.4	0.14 B	0.29 B	0.13 U	0.12 U	0.16 U	0.23 U	1 B
Chromium (mg/kg)	26	110	58.9	36	22.9	63.9	31.5	34.2	41.8	28	72.1	47.5	89.8
Copper (mg/kg)	16	110	76.1	52.9	22.2	70.1	35.1	40.4	51.2	26.9	80.1	45.5	93.3
Lead (mg/kg)	31	110	72.8	46.2	15.8	81.5	31.7	34.8	47.6	24.2	80.9	40.1	118
Manganese (mg/kg)	460	1100											
Mercury (mg/kg)	0.2	1.3	0.67	0.56	0.15	0.75	0.22	0.19	0.31	1	0.49	0.58	0.85
Nickel (mg/kg)	16	50	30.8	18.9	21	22.8	20.9	21.6	22.4	21.8	32	36.6	29.9
Zinc (mg/kg)	120	270	191	121	77.3	160	98.9	102	129	91.9	210	154	202

Sediment Remedial Investigation Report Former General Motors North Tarrytown Assembly Plant Sleepy Hollow, New York

Notes:

1. Screening values for metals are the NYSDEC (1999) LELs and SELs.

2. Total PCB and PAH screening values are the LELs and SELs presented in Persaud et al. (1993)

LEL = Lowest Effect Level.

SEL = Severe Effect Level.

Bolded values exceed LEL.

Shaded values exceed SEL.

mg/kg = milligrams per kilogram (concentration in parts per million).

NA = not available.

Data Qualifiers:

B = For metals, indicates that the reported value was obtained from a reading that was less than the Contract Required Detection Limit (CRDL), but greater than or equal to the Instrument Detection Limit (IDL).

J = Indicates an estimated value.

N = Indicates that the spiked sample recovery is not within control limits.

U = Indicates that the analyte was analyzed for but not detected.

TABLE 4 SEDIMENT DATA OUTLIER ANALYSIS - 1997-2004 STUDY

Sediment Remedial Investigation Report Former General Motors North Tarrytown Assembly Plant Sleepy Hollow, New York

	Statistical	Outliers Identified by
Constituent	Distribution Used	Median Absolute Deviation Z-Score
	1	
Arsenic	Lognormal ¹	Versar 506, Versar 1087
Barium	Lognormal ²	T17A, SED43B
Chromium	Lognormal ²	None
Cadmium	Lognormal ²	None
Copper	Lognormal ²	None
Lead	Lognormal ²	None
Manganese	Normal ²	T17A
Nickel	Normal ¹	None
Mercury	Lognormal ¹	None
Zinc	Lognormal ²	None

Notes:

- 1. The statistical distribution was identified by the Chi Square Test, Shapiro Wilks Test, Kolmolgorov-Smirnov Test, and/or Anderson-Darling Test (p>0.05).
- 2. The statistical distribution identified was not statistically significant, but was selected based on closeness of fit, the effect of removing outliers, and professional judgment.

Non-detections were included as one-half the sample detection limit.

All results generated by Statgraphics software outlier identification option.

TABLE 5 WATER QUALITY DATA - 2004 STUDY

Sample Location	Collection Date	Measurement Interval	DO (mg/L)	Water Temperature (C)	Salinity (%)	ORP (mV)	pН	Conductivity (mS/cm)	Turbidity, Minimum	Turbidity, Maximum	TDS (g/L)
SED1	7/7/2004	Surface	6.25	24.80	0.87	128	7.40	14.9	35	39	9.2
OLDI	11112004	Bottom	6.30	24.70	0.88	134	7.30	15.1	49	53	9.3
SED2	7/7/2004	Surface	7.20	25.73	0.81	146	7.45	14.0	12	15	8.7
0500	7/7/0004	Bottom	7.48	25.38	0.85	154	7.40	14.7	18	21	9.1
SED3	7/7/2004	Surface Bottom	7.50 7.60	25.67 25.05	0.83 0.90	6 -97	7.53 7.29	14.4 15.5	32 32	32 32	8.9 9.6
SED4	7/7/2004	Surface	8.14	26.10	0.81	37	7.56	14.1	39	42	8.7
		Bottom	8.40	26.15	0.83	9	7.39	14.5	31	36	8.8
SED5	7/7/2004	Surface	7.96	25.63	0.83	133	7.49	14.2	24	27	8.9
SED6	7/8/2004	Bottom Surface	7.99 6.88	25.21 24.58	0.87	141 165	7.43 7.35	15.0 16.2	80	110 17	9.3 10.0
0220	170/2001	Bottom	7.20	24.56	0.95	172	7.33	16.2	24	47	10.1
SED7	7/8/2004	Surface	7.20	24.65	0.92	124	7.48	15.8	35	47	9.8
SED8	7/8/2004	Bottom Surface	7.18	24.81	0.91	134	7.42	15.6	16	16	9.6
		Bottom									
SED9	7/8/2004	Surface	7.03	24.91	0.91	32	7.43	15.5	11	13	9.6
SED10	7/8/2004	Bottom Surface	7.48 7.86	24.94 25.38	0.92	53 165	7.36 7.56	15.8 15.7	84 4	110 6	9.7 9.7
GEDTO	110/2004	Bottom	1.00	20.00	0.01	100	1.00	10.7	-	Ŭ	0.7
SED11	7/8/2004	Surface	7.76	25.30	0.81	30	7.46	14.0	19	22	8.7
SED12	7/8/2004	Bottom Surface	8.18 8.09	25.29 25.74	0.90	6 136	7.40 7.52	15.3 13.0	210 1	260 1	9.5 8.1
SEDIZ	110/2004	Bottom	8.14	25.56	0.73	145	7.54	15.1	9	9	9.3
SED13	7/8/2004	Surface	8.14	25.99	0.81	34	7.58	13.9	1	4	8.6
05544	= /0 /0.00 /	Bottom	8.47	25.99	0.81	-5	7.57	14.0	16	27	8.7
SED14	7/9/2004	Surface Bottom	7.34 7.24	24.93 24.80	0.81 0.88	31 -6	7.42 7.38	14.4 15.4	22 47	47 62	8.8 9.2
SED15	7/9/2004	Surface	7.54	24.86	0.85	39	7.51	14.6	15	99	9.2
		Bottom	7.69	24.85	0.89	113	7.50	15.5	200	250	9.4
SED16	7/12/2004	Surface	7.31	25.38	0.75	170	7.58	13.1	0	0	8.1
SED17	7/12/2004	Bottom Surface	6.70 7.02	25.07 25.34	0.97	181 1.71	7.47 7.55	16.5 13.0	0	0	10.2 8.1
02011		Bottom	6.71	24.96	0.98	182	2.53	16.8			10.3
SED18	7/9/2004	Surface	7.98	25.71	0.74	37	7.63	12.8	8	8	7.9
SED19	7/9/2004	Bottom Surface	8.04 7.88	25.61 25.19	0.75	24 37	7.64 7.56	13.0 12.9	260 23	260 30	8.0 8.1
SED19	7/9/2004	Bottom	7.90	25.19	0.75	15	7.55	12.9	23 56	100	8.3
SED20	7/12/2004	Surface	7.43	25.38	0.71	134	7.58	12.4			7.7
05504	= /0 /0.00 /	Bottom	7.09	25.20	0.86	140	7.58	14.7			9.1
SED21	7/9/2004	Surface Bottom	7.80 7.63	25.67 25.16	0.69 0.81	27 8	7.69 7.64	12.1 14.0	7 17	10 22	7.5 8.7
SED22	7/9/2004	Surface	8.14	25.46	0.71	28	7.59	14.0	37	47	7.7
		Bottom	8.24	25.41	0.73	18	7.57	12.6	37	43	7.9
SED23	7/12/2004	Surface	7.77	25.54	0.64	141	7.74	11.4			7.0
SED24	7/12/2004	Bottom Surface	6.50 7.63	25.48 25.57	0.89	152 171	7.43 7.64	17.0 11.5	410	410	9.7 7.2
02021		Bottom	7.24	25.22	0.87	183	61.00	14.8	7	7	9.4
SED25	7/12/2004	Surface	7.44	25.42	0.72	167	7.68	12.6			7.7
SED26	7/13/2004	Bottom Surface	6.27	24.81	1.07	178 207	7.43	17.9			11.1 7.9
SED26	7/13/2004	Bottom	6.96 6.84	24.47 24.19	0.75 0.92	207	7.58 7.54	12.8 15.8			7.9 9.7
SED27	7/13/2004	Surface	6.86	24.57	0.70	144	7.69	12.2			7.6
		Bottom	5.63	23.94	1.34	190	7.33	24.0	280	670	13.6
SED28	7/13/2004	Surface Bottom	7.01 5.67	24.53 23.97	0.69 1.34	164 176	7.72 7.42	12.2 22.3			7.5 13.7
SED29	7/13/2004	Surface	7.51	23.37	0.76	173	7.71	13.1			8.1
		Bottom	7.20	24.33	0.94	180	7.55	16.6			9.7
SED30	7/13/2004	Surface	7.57	24.36	0.74	173	7.72	12.9			8.0
SED31	7/13/2004	Bottom Surface	7.63 7.73	24.34 24.29	0.74 0.72	174 74	7.73 7.70	12.8 12.6			7.9 7.8
SEDUI	7713/2004	Bottom	8.14	24.29	0.72	62	7.70	12.6			7.8
SED32	7/13/2004	Surface	7.15	24.65	0.73	134	7.69	12.7			7.9
00000	7/1 //000 1	Bottom	5.82	23.79	1.35	159	7.46	22.3			13.8
SED33	7/14/2004	Surface	7.43 7.58	24.27 24.00	0.70 0.75	189 197	7.66 7.65	12.2 13.2			7.6

TABLE 5 WATER QUALITY DATA - 2004 STUDY

Sediment Remedial Investigation Report Former General Motors North Tarrytown Assembly Plant Sleepy Hollow, New York

Sample	Collection	Measurement	DO	Water	Salinity	ORP		Conductivity	Turbidity,	Turbidity,	TDS
Location	Date	Interval	(mg/L)	Temperature (C)	(%)	(mV)	pН	(mS/cm)	Minimum	Maximum	(g/L)
SED34	7/14/2004	Surface	7.36	24.07	0.72	197	7.59	12.5			7.8
		Bottom	7.51	24.03	0.72	198	7.50	12.6			7.8
SED35	7/14/2004	Surface	7.44	24.10	0.71	90	7.72	12.3			7.7
		Bottom	7.58	24.03	0.72	95	7.68	12.6			7.8
SED36	7/14/2004	Surface	7.52	24.17	0.70	164	7.72	12.2			7.7
		Bottom	7.54	24.11	0.71	165	7.70	12.5			7.7
SED37	7/14/2004	Surface	7.93	24.08	0.70	171	7.76	12.2			7.6
		Bottom									
SED38	7/14/2004	Surface	7.54	24.18	0.71	172	7.69	12.3			7.7
		Bottom	7.54	23.98	0.78	175	7.62	14.4			8.3
SED39	7/14/2004	Surface	8.44	24.71	0.67	81	7.73	11.7			7.2
		Bottom									
SED40	7/15/2004	Surface	7.36	24.68	0.58	218	7.57	10.4			6.4
		Bottom	7.43	24.50	0.62	218	7.60	10.9			6.8
SED41	7/15/2004	Surface	7.49	24.91	0.56	208	7.62	10.0			6.2
		Bottom	8.04	24.56	0.65	216	7.68	11.2			7.1
SED42	7/15/2004	Surface	7.51	24.89	0.58	199	7.63	10.3			6.4
		Bottom	7.93	24.69	0.61	207	7.70	10.7			6.7
SED43	7/15/2004	Surface	7.25	24.82	0.60	173	7.64	10.6			6.6
		Bottom	7.58	24.54	0.73	180	7.65	12.7			7.8
SED44	7/15/2004	Surface	7.29	25.34	0.58	175	7.20	10.3			6.4
		Bottom	8.07	25.19	0.58	181	7.62	10.3			6.4
SED45	7/15/2004	Surface	7.88	25.48	0.58	177	7.71	10.4			6.4
		Bottom	8.21	25.47	0.58	176	7.71	10.3			6.4

Notes:

- - = Not available.

% = percentage C = degrees Celsius

DO = dissolved oxygen

g/L = grams per liter

mg/L = milligrams per liter

mS/cm = milliSiemens per ce (milli - assumed due to estuarine conditions)

mV = millivolts

NTU = Nephelometric Turbidity Units

ORP = Oxidation Reduction Potential

TDS = Total Dissolved Solids

Shading = average (DO was reported as a range.)

	Area	Cumulative Ranking	Cr Ratio	Cu Ratio	Pb Ratio	Hg Ratio	Zn Ratio
Sample Location	Classification	SEL	110	110	110	1.3	270
SED10B	Near-Site	24.92	2.40	0.393	13.36	0.25	8.52
SED10A	Near-Site	20.24	1.78	0.598	9.73	0.10	8.04
SED10C	Near-Site	14.20	1.28	0.598	8.53	0.45	3.34
T07A	Near-Site	12.79	0.82	1.327	9.18	0.07	1.39
SED25C	Near-Site	9.86	1.31	1.473	1.80	4.08	1.20
SED21C	Near-Site	8.95	1.13	1.500	1.29	3.85	1.19
SED34B	Near-Site	8.68	1.00	1.091	1.52	3.77	1.30
SED21B	Near-Site	8.37	1.00	1.327	1.31	3.69	1.04
SED6A	Near-Site	6.97	0.93	1.282	1.24	2.62	0.91
T04C	Near-Site	6.80	0.99	1.191	1.75	1.90	0.97
SED21A	Near-Site	6.75	1.03	1.400	1.32	1.92	1.08
SED7C	Near-Site	6.75	0.84	1.291	1.20	2.46	0.95
SED1C	Near-Site	6.67	0.87	1.191	1.60	2.08	0.93
SED7B	Near-Site	6.53	0.96	1.345	1.46	1.77	0.99
SED13C	Near-Site	6.36	0.90	1.564	1.32	1.62	0.97
T07B	Near-Site	6.13	0.81	0.677	3.45	0.24	0.95
SED2C	Near-Site	5.92	0.86	1.082	1.15	1.92	0.91
SED19A	Near-Site	5.86	1.38	0.632	1.52	0.60	1.73
SED13B	Near-Site	5.76	0.80	1.036	1.15	2.00	0.79
SED20C	Near-Site	5.73	0.80	1.600	1.25	1.08	1.00
SED 43B	Background	5.70	1.05	0.955	1.45	1.23	1.01
SED20B	Near-Site	5.69	0.79	1.582	1.31	1.08	0.94
SED39B	Near-Site	5.61	0.43	0.388	1.31	2.69	0.79
SED17C	Near-Site	5.60	0.95	1.564	1.15	0.92	1.02
SED17B	Near-Site	5.58	0.83	1.800	1.13	0.92	0.90
SED18B	Near-Site	5.35	0.94	0.991	1.22	1.31	0.90
SED12A	Near-Site	5.13	0.65	1.118	1.33	1.08	0.96
SED1B	Near-Site	5.08	0.72	0.866	0.93	1.85	0.72
SED13A	Near-Site	5.06	0.74	0.825	0.98	1.77	0.74
SED38C*	Near-Site	5.06	0.81	0.723	1.08	1.64	0.80
SED2A	Near-Site	5.04	1.10	1.436	1.55		0.96
SED7A	Near-Site	4.98	0.74	1.027	1.04	1.38	0.79
T06F	Near-Site	4.98	0.73	0.744	1.05	1.72	0.75
SED18C*	Near-Site	4.90	0.86	0.894	1.05	1.23	0.86
SED36C*	Near-Site	4.86	0.97	0.858	1.10	1.04	0.89
SED31C	Near-Site	4.81	0.72	0.716	1.00	1.54	0.84
SED35C	Near-Site	4.75	0.96	0.905	1.06	0.92	0.90
SED38B*	Near-Site	4.70	0.95	0.830	1.20	0.82	0.89
SED20A	Near-Site	4.59	0.72	1.155	1.05	0.85	0.82
SED25B	Near-Site	4.56	0.78	1.000	0.91	1.15	0.72
T05G	Near-Site	4.48	0.68	1.064	0.86	1.16	0.71
SED19B	Near-Site	4.38	0.70	0.777	1.20	0.71	0.99
T14E*	Background	4.37	0.73	0.855	0.84	1.27	0.67

	Area	Cumulative Ranking	Cr Ratio	Cu Ratio	Pb Ratio	Hg Ratio	Zn Ratio
Sample Location	Classification	SEL	110	110	110	1.3	270
T04I	Near-Site	4.30	0.85	0.878	0.99	0.88	0.69
T04G	Near-Site	4.27	0.64	1.000	0.76	1.24	0.64
SED5C	Near-Site	4.22	0.39	0.973	0.81	1.23	0.82
SED33C	Near-Site	4.18	0.76	0.918	0.86	0.85	0.80
SED5A	Near-Site	4.16	0.50	0.918	0.95	1.00	0.79
1087	Background	4.14	0.82	0.848	1.07	0.65	0.75
307	Background	4.11	0.78	0.828	0.95	0.85	0.70
T02B	Near-Site	4.10	0.45	0.867	0.79	1.35	0.64
T06K	Near-Site	4.08	0.66	0.639	0.96	1.15	0.66
T08E	Near-Site	4.04	0.74	0.703	1.06	0.89	0.64
T09C	Near-Site	4.01	0.70	0.720	1.15	0.69	0.75
SED11B	Near-Site	4.00	0.37	0.936	0.84	1.08	0.77
SED17A	Near-Site	3.98	0.68	0.818	0.84	0.92	0.72
SED11C	Near-Site	3.98	0.35	0.812	0.71	1.38	0.72
SED2B	Near-Site	3.96	0.51	0.579	0.64	1.69	0.53
SED34A	Near-Site	3.95	0.67	0.757	0.90	0.85	0.78
SED14C	Near-Site	3.92	0.69	0.764	0.81	0.92	0.74
T06A	Near-Site	3.88	0.36	0.435	1.20	1.18	0.71
SED5B	Near-Site	3.87	0.43	0.882	0.90	0.92	0.74
SED16C	Near-Site	3.82	0.42	1.036	0.81	0.77	0.79
T17A	Background	3.79	0.52	0.603	0.66	1.31	0.70
T04D	Near-Site	3.79	0.77	0.737	0.86	0.72	0.71
SED6B	Near-Site	3.74	0.46	0.866	0.91	0.77	0.73
SED12B	Near-Site	3.71	0.42	0.841	0.94	0.76	0.75
SED15A	Near-Site	3.67	0.62	0.627	0.96	0.58	0.89
SED15B	Near-Site	3.66	0.63	0.694	0.89	0.62	0.83
SED4C	Near-Site	3.66	0.68	0.728	0.76	0.65	0.83
SED14B	Near-Site	3.63	0.65	0.745	0.79	0.72	0.71
SED32C	Near-Site	3.60	0.64	0.741	0.75	0.75	0.72
SED19C*	Near-Site	3.57	0.62	0.642	0.82	0.63	0.86
SED3B	Near-Site	3.57	0.64	0.727	0.80	0.65	0.75
SED1A	Near-Site	3.54	0.62	0.614	0.75	0.92	0.64
SED18A	Near-Site	3.54	0.63	0.697	0.81	0.67	0.74
SED8B*	Near-Site	3.53	0.58	0.666	0.76	0.83	0.69
SED36B	Near-Site	3.51	0.64	0.753	0.76	0.66	0.70
SED4A	Near-Site	3.50	0.64	0.695	0.78	0.61	0.79
SED15C	Near-Site	3.48	0.63	0.666	0.82	0.57	0.80
SED33B	Near-Site	3.48	0.56	0.705	0.75	0.77	0.69
T07C	Near-Site	3.43	0.56	0.673	0.83	0.56	0.80
T06B	Near-Site	3.43	0.39	0.539	0.78	1.01	0.70
T09D	Near-Site	3.42	0.60	0.787	0.66	0.75	0.63
SED11A	Near-Site	3.42	0.36	0.769	0.76	0.85	0.69
SED14A	Near-Site	3.40	0.59	0.671	0.72	0.70	0.71

	Area	Cumulative Ranking	Cr Ratio	Cu Ratio	Pb Ratio	Hg Ratio	Zn Ratio
Sample Location	Classification	SEL	110	110	110	1.3	270
SED31B	Near-Site	3.37	0.60	0.685	0.73	0.72	0.63
SED4B	Near-Site	3.35	0.62	0.668	0.74	0.58	0.74
T04F	Near-Site	3.34	0.41	0.703	0.63	1.05	0.55
T05D	Near-Site	3.29	0.53	0.553	0.74	0.83	0.64
SED3C	Near-Site	3.28	0.59	0.636	0.69	0.63	0.73
1085	Background	3.27	0.66	0.728	0.74	0.38	0.78
T07E	Near-Site	3.27	0.57	0.650	0.73	0.63	0.69
T05F	Near-Site	3.24	0.41	0.630	0.73	0.85	0.62
SED6C	Near-Site	3.24	0.37	0.805	0.72	0.69	0.66
T11E	Near-Site	3.22	0.59	0.586	0.61	0.84	0.59
T13C	Near-Site	3.21	0.65	0.609	0.67	0.71	0.58
SED16A	Near-Site	3.18	0.38	0.714	0.79	0.62	0.67
SED8C*	Near-Site	3.14	0.56	0.619	0.72	0.57	0.68
1080	Background	3.13	0.58	0.637	0.741	0.577	0.59
1077	Background	3.11	0.54	0.692	0.66	0.52	0.71
T12E	Near-Site	3.11	0.46	0.428	0.45	1.28	0.48
255	Background	3.09	0.48	0.555	0.59	0.92	0.54
T03E	Near-Site	3.07	0.43	0.534	0.50	1.14	0.47
T05C	Near-Site	3.06	0.55	0.551	0.63	0.64	0.68
T12C	Near-Site	3.05	0.52	0.559	0.55	0.85	0.57
SED35B	Near-Site	3.02	0.56	0.598	0.70	0.55	0.61
SED8A*	Near-Site	3.02	0.52	0.602	0.66	0.58	0.65
SED3A	Near-Site	3.01	0.56	0.591	0.64	0.48	0.73
SED32A	Near-Site	3.00	0.53	0.600	0.64	0.57	0.66
SED35A	Near-Site	3.00	0.52	0.605	0.68	0.57	0.62
T09G	Near-Site	2.98	0.76	0.500	0.67	0.47	0.58
T07G	Near-Site	2.97	0.41	0.705	0.61	0.69	0.54
T05B	Near-Site	2.93	0.49	0.497	0.52	0.84	0.58
T07D	Near-Site	2.92	0.54	0.593	0.66	0.44	0.68
T10F	Near-Site	2.92	0.64	0.600	0.67	0.35	0.66
508	Background	2.91	0.42	0.645	0.75	0.38	0.72
T08C	Near-Site	2.91	0.37	0.465	1.07	0.30	0.70
407	Background	2.90	0.55	0.616	0.63	0.44	0.66
T06G	Near-Site	2.89	0.38	0.600	0.68	0.64	0.59
T06H	Near-Site	2.87	0.35	0.612	0.67	0.64	0.60
T06E	Near-Site	2.84	0.52	0.530	0.62	0.53	0.64
T05A	Near-Site	2.83	0.51	0.505	0.53	0.72	0.57
T07H	Near-Site	2.80	0.49	0.557	0.59	0.61	0.55
T03C	Near-Site	2.80	0.50	0.611	0.57	0.55	0.57
608	Background	2.79	0.54	0.594	0.63	0.31	0.72
T16C	Background	2.78	0.54	0.469	0.57	0.63	0.58
SED9B	Near-Site	2.77	0.44	0.487	0.75	0.48	0.61
T04H	Near-Site	2.74	0.38	0.457	0.58	0.88	0.43

	Area	Cumulative Ranking	Cr Ratio	Cu Ratio	Pb Ratio	Hg Ratio	Zn Ratio
Sample Location	Classification	SEL	110	110	110	1.3	270
SED12C	Near-Site	2.73	0.32	0.657	0.62	0.53	0.60
T17D	Background	2.71	0.56	0.446	0.60	0.53	0.58
T06D*	Near-Site	2.69	0.43	0.533	0.57	0.62	0.54
SED9C	Near-Site	2.68	0.48	0.520	0.62	0.44	0.63
T06C	Near-Site	2.67	0.37	0.445	0.60	0.69	0.57
SED36A	Near-Site	2.66	0.47	0.535	0.56	0.52	0.58
SED 43A	Background	2.64	0.62	0.498	0.65	0.25	0.61
SED33A	Near-Site	2.59	0.45	0.544	0.58	0.45	0.56
T10E	Near-Site	2.58	0.54	0.525	0.53	0.42	0.57
SED31A	Near-Site	2.58	0.48	0.539	0.54	0.45	0.57
T14D	Background	2.57	0.39	0.546	0.55	0.56	0.54
T02E	Near-Site	2.55	0.48	0.561	0.55	0.44	0.51
T06I	Near-Site	2.55	0.48	0.476	0.52	0.51	0.56
T17B	Background	2.55	0.48	0.485	0.52	0.48	0.59
T05H	Near-Site	2.55	0.43	0.498	0.56	0.58	0.48
T13D	Near-Site	2.55	0.44	0.443	0.48	0.67	0.51
SED38A*	Near-Site	2.54	0.44	0.501	0.56	0.48	0.56
SED25A	Near-Site	2.50	0.47	0.504	0.47	0.53	0.51
T02D*	Near-Site	2.47	0.48	0.569	0.51	0.43	0.48
T05E	Near-Site	2.47	0.45	0.429	0.50	0.60	0.48
SED9A	Near-Site	2.45	0.43	0.477	0.55	0.42	0.57
SED39C	Near-Site	2.44	0.29	0.256	1.05	0.32	0.52
SED32B	Near-Site	2.44	0.42	0.481	0.54	0.47	0.53
208	Background	2.41	0.47	0.536	0.54	0.32	0.54
506	Background	2.39	0.41	0.515	0.55	0.33	0.58
T16B	Background	2.37	0.47	0.420	0.52	0.41	0.54
T12D	Near-Site	2.36	0.44	0.432	0.45	0.58	0.46
551	Background	2.33	0.44	0.475	0.55	0.28	0.57
T09E	Near-Site	2.30	0.47	0.405	0.58	0.43	0.41
SED30A*	Near-Site	2.28	0.31	0.328	0.82	0.32	0.50
202	Background	2.27	0.41	0.514	0.50	0.29	0.55
T03F	Near-Site	2.25	0.46	0.274	0.50	0.49	0.53
SED16B	Near-Site	2.23	0.27	0.513	0.51	0.47	0.46
1086	Background	2.23	0.43	0.414	0.36	0.45	0.57
T14C	Background	2.18	0.37	0.369	0.35	0.66	0.43
SED30B*	Near-Site	2.17	0.33	0.369	0.50	0.53	0.44
T08A	Near-Site	2.16	0.32	0.403	0.66	0.32	0.46
SED22A	Near-Site	2.11	0.36	0.401	0.53	0.36	0.46
1078	Background	2.11	0.33	0.481	0.42	0.43	0.45
T08F	Near-Site	2.06	0.37	0.411	0.44	0.40	0.44
604	Background	2.06	0.40	0.434	0.47	0.18	0.58
T08I	Near-Site	2.06	0.40	0.375	0.47	0.31	0.50
T15B	Background	2.05	0.39	0.285	0.35	0.57	0.46

	Area	Cumulative Ranking	Cr Ratio	Cu Ratio	Pb Ratio	Hg Ratio	Zn Ratio
Sample Location	Classification	SEL	110	110	110	1.3	270
1076	Background	2.00	0.39	0.450	0.42	0.25	0.49
T04E	Near-Site	2.00	0.37	0.371	0.34	0.53	0.38
1083	Background	1.99	0.38	0.465	0.43	0.24	0.48
SED39A	Near-Site	1.97	0.34	0.331	0.47	0.39	0.44
T17C	Background	1.97	0.39	0.285	0.35	0.50	0.45
209	Background	1.96	0.43	0.476	0.49	0.06	0.50
302	Background	1.94	0.39	0.453	0.47	0.16	0.47
504	Background	1.94	0.21	0.239	0.28	0.92	0.30
SED37C	Near-Site	1.93	0.16	0.150	1.15	0.05	0.41
252	Background	1.89	0.41	0.466	0.46	0.03	0.52
1084	Background	1.83	0.25	0.245	0.22	0.77	0.34
T11D	Near-Site	1.82	0.34	0.311	0.38	0.41	0.37
SED30C*	Near-Site	1.79	0.28	0.316	0.40	0.40	0.38
T13A	Near-Site	1.79	0.38	0.331	0.38	0.26	0.44
T05I	Near-Site	1.74	0.29	0.290	0.34	0.48	0.34
T13B	Near-Site	1.72	0.39	0.303	0.34	0.27	0.41
T11F	Near-Site	1.72	0.35	0.142	0.29	0.53	0.40
T09A	Near-Site	1.70	0.31	0.327	0.36	0.32	0.39
T13E	Near-Site	1.70	0.33	0.275	0.38	0.33	0.38
SED 43C	Background	1.69	0.39	0.293	0.39	0.21	0.41
T11G	Near-Site	1.63	0.30	0.311	0.33	0.35	0.33
259	Background	1.61	0.31	0.348	0.34	0.22	0.39
T13F	Near-Site	1.60	0.33	0.278	0.31	0.34	0.35
SED 44A	Background	1.57	0.33	0.293	0.30	0.22	0.43
T07F	Near-Site	1.55	0.27	0.297	0.32	0.32	0.35
1082	Background	1.52	0.31	0.367	0.32	0.15	0.38
T08G	Near-Site	1.51	0.29	0.276	0.44	0.12	0.38
T16A	Background	1.49	0.35	0.277	0.32	0.12	0.43
SED34C	Near-Site	1.48	0.26	0.226	0.24	0.42	0.34
T14A	Background	1.46	0.26	0.255	0.26	0.34	0.35
T09B	Near-Site	1.46	0.27	0.302	0.30	0.27	0.32
SED22C	Near-Site	1.44	0.33	0.303	0.26	0.16	0.39
1074	Background	1.44	0.29	0.340	0.32	0.12	0.37
1081	Background	1.43	0.29	0.319	0.29	0.17	0.37
T03D	Near-Site	1.41	0.29	0.170	0.33	0.28	0.34
T15A	Background	1.41	0.36	0.222	0.28	0.13	0.43
403	Background	1.39	0.27	0.274	0.28	0.17	0.40
1075	Background	1.37	0.24	0.316	0.26	0.19	0.36
606	Background	1.35	0.28	0.264	0.27	0.16	0.38
T08B*	Near-Site	1.32	0.22	0.222	0.35	0.19	0.35
T14B	Background	1.30	0.26	0.233	0.24	0.24	0.33
SED27B	Near-Site	1.28	0.24	0.237	0.38	0.09	0.33
T02C	Near-Site	1.28	0.24	0.113	0.27	0.37	0.29

Somula Leastion	Area	Cumulative Ranking	Cr Ratio	Cu Ratio	Pb Ratio	Hg Ratio	Zn Ratio
Sample Location 408	Classification	SEL 1.26	110	110	110	1.3	270
408 T10B	Background Near-Site	<u>1.26</u> 1.24	0.29	0.247 0.236	0.25 0.45	0.09	0.37 0.34
T09F	Near-Site	1.24	0.14	0.230	0.45	0.07	0.34
T10G*	Near-Site	1.19	0.31	0.119	0.32	0.13	0.35
353		1.19	0.31	0.133	0.27		0.35
	Background				0.18	0.25	
SED27A	Background	1.15	0.29	0.182			0.35
	Near-Site	1.12	0.22	0.209	0.32	0.09	0.29
T15D	Background	1.09	0.28	0.165	0.20	0.13	0.33
T11C	Near-Site	1.06	0.19	0.087	0.19	0.38	0.22
SED37B	Near-Site	1.04	0.12	0.082	0.49	0.07	0.28
SED 40A	Background	1.03	0.29	0.175	0.15	0.05	0.36
SED 41A*	Background	0.99	0.26	0.166	0.16	0.07	0.33
1079	Background	0.96	0.21	0.202	0.14	0.12	0.29
SED 45A	Background	0.95	0.25	0.171	0.15	0.05	0.32
SED27C	Near-Site	0.94	0.25	0.166	0.16	0.05	0.32
452	Background	0.94	0.24	0.181	0.16	0.04	0.32
SED 40B	Background	0.92	0.27	0.157	0.13	0.02	0.34
SED37A	Near-Site	0.91	0.13	0.078	0.36	0.05	0.31
402	Background	0.91	0.14	0.170	0.20	0.12	0.28
T10C	Near-Site	0.91	0.16	0.055	0.32	0.07	0.30
SED 44B	Background	0.90	0.25	0.163	0.14	0.02	0.32
SED 42A	Background	0.90	0.24	0.151	0.13	0.05	0.32
SED24A*	Near-Site	0.89	0.22	0.159	0.15	0.10	0.27
T12B	Near-Site	0.89	0.22	0.150	0.19	0.08	0.24
SED 42B	Background	0.88	0.25	0.153	0.13	0.03	0.32
T08D	Near-Site	0.88	0.12	0.132	0.25	0.08	0.30
SED 41B*	Background	0.87	0.26	0.143	0.13	0.02	0.32
207	Background	0.86	0.19	0.175	0.16	0.08	0.25
SED23A	Near-Site	0.86	0.21	0.152	0.15	0.07	0.27
SED 40C	Background	0.85	0.24	0.155	0.12	0.02	0.31
T10A	Near-Site	0.84	0.12	0.044	0.32	0.07	0.28
SED 42C	Background	0.84	0.24	0.140	0.12	0.02	0.32
SED 45C	Background	0.81	0.23	0.142	0.12	0.02	0.30
T03B	Near-Site	0.81	0.25	0.079	0.13	0.10	0.26
SED 41C*	Background	0.81	0.24	0.133	0.12	0.02	0.30
T02A	Near-Site	0.80	0.22	0.085	0.15	0.09	0.26
SED29A	Near-Site	0.78	0.21	0.146	0.13	0.05	0.25
306	Background	0.78	0.22	0.139	0.11	0.04	0.27
T03A	Near-Site	0.78	0.21	0.085	0.14	0.09	0.25
T10D	Near-Site	0.78	0.13	0.037	0.28	0.08	0.25
SED 45B	Background	0.77	0.22	0.136	0.11	0.02	0.29
SED22B	Near-Site	0.76	0.18	0.143	0.12	0.07	0.24
SED28A	Near-Site	0.76	0.22	0.134	0.11	0.05	0.25

Sediment Remedial Investigation Report Former General Motors North Tarrytown Assembly Plant Sleepy Hollow, New York

	Area	Cumulative Ranking	Cr Ratio	Cu Ratio	Pb Ratio	Hg Ratio	Zn Ratio
Sample Location	Classification	SEL	110	110	110	1.3	270
SED 44C	Background	0.74	0.21	0.131	0.10	0.02	0.27
SED23C	Near-Site	0.74	0.21	0.127	0.11	0.02	0.27
SED23B	Near-Site	0.73	0.20	0.122	0.13	0.02	0.25
SED28C	Near-Site	0.72	0.23	0.125	0.10	0.02	0.26
310	Background	0.69	0.18	0.138	0.13	0.01	0.23
SED29C	Near-Site	0.69	0.20	0.120	0.09	0.02	0.25
SED24C*	Near-Site	0.69	0.21	0.113	0.10	0.02	0.25
T12A	Near-Site	0.68	0.15	0.097	0.15	0.08	0.20
SED29B	Near-Site	0.67	0.20	0.116	0.09	0.02	0.24
SED24B*	Near-Site	0.60	0.18	0.101	0.09	0.02	0.21
SED28B	Near-Site	0.58	0.16	0.099	0.08	0.03	0.20
510	Background	0.55	0.07	0.071	0.06	0.24	0.11
SED26A	Near-Site	0.53	0.12	0.115	0.09	0.02	0.18
T11H	Near-Site	0.52	0.20	0.066	0.05	0.06	0.14
T12F	Near-Site	0.52	0.21	0.065	0.05	0.06	0.13
SED26B	Near-Site	0.44	0.11	0.112	0.03	0.02	0.17
SED26C	Near-Site	0.42	0.10	0.102	0.03	0.02	0.17

Notes:

SEL = Severe Effect Level (freshwater values cited from Persaud et al. (1992))

Cr = Chromium

Cu = Copper

Pb = Lead

Hg = Mercury

Zn = Zinc

* = Indicates field duplicate analyzed and averaged with original field sample at this location.

Individual ratio equals the sample concentration divided by the SEL.

Cumulative ranking is the sum of the individual ratios per sample location.

TABLE 7 SAMPLE MATRIX SUMMARY - 2006 STUDY

MEDIUM			SEDIMENT				PORE WATER	BIOLOGICAL TISSUE	BENTHIC COMMUNITY	SEDIMENT TOXICITY
LABORATORY ANALYSIS	SURFACE COPC Metals/TOC/AVS/SEM	SUBSURFACE COPC Metals/TOC	Chronology Cesium-137 and Lead-210	Grain-Size Distribution	Physical Characteristics	Consolidation Test	Select COPC Metals/TOC (Dissolved)/Total Hardness (CaCO3) & pH	COPC Metals	Taxonomy and Counts	28-Day Bioassay
SED100	Х			Х			NR	Х	Х	Х
SED101	Х			Х			Х	Х	Х	Х
SED102	Х	Х		Х			Х		Х	Х
SED103	Х	Х	Х	Х			Х	Х	Х	Х
SED104	X	Х	Х	Х			Х		Х	Х
SED105	Х			Х			Х	Х	Х	Х
SED106	Х			Х			Х	Х	Х	Х
SED107	Х			Х			Х		Х	Х
SED108	Х			Х			Х	Х	Х	Х
SED109	Х			Х			Х		Х	Х
SED110	Х			Х			NR	Х	Х	Х
SED111	Х			Х			Х		Х	Х
SED112	Х			Х			Х		Х	Х
SED113	Х			Х			Х		Х	Х
SED114	Х			Х			Х		Х	Х
SED115	Х			Х			Х		Х	Х
SED116	Х			Х			Х		Х	Х
SED117	Х			Х			Х		Х	Х
SED118	X			X			NR		X	X
SED119	X	Х		X			X		X	X
SED120	X			X			X	Х	X	X
SED121	X			X			X	X	X	X
SED122	X			X			X		X	X
SED123	X	Х	Х	X			X		X	X
SED124	X	~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	X			X	Х	X	X
SED125	X			X			X		X	X
SED126	X	Х	Х	X			NR	Х	X	X
SED127	X	X	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	X			X	~	X	X
SED128	X	X	Х	X			X		X	X
SED129	X			X			X	Х	X	X
SED130	X			X		l	X	X	X	X
SED130	X			X			X	~	X	X
SED131 SED132	X			X X			X		X	X
SED132	X			X			X	Х	X	X
SED134	X			X			X	X	X	X
SED135	X			X X			X	~	X	X
SED135	X			× ×			X		X	X
SED130	X			× ×			X	Х	X	~
SED138	X	X	х	X X			X	~	X	х
SED138	X	^	Λ	× ×			X		X	X
SED139	^	Х		^			^		^	~
SED140		X								
SED141	1	X								
SED142	1	X				<u> </u>			<u> </u>	

TABLE 7 SAMPLE MATRIX SUMMARY - 2006 STUDY

Sediment Remedial Investigation Report Former General Motors North Tarrytown Assembly Plant Sleepy Hollow, New York

MEDIUM			SEDIMENT				PORE WATER	BIOLOGICAL TISSUE	BENTHIC COMMUNITY	SEDIMENT TOXICITY
LABORATORY ANALYSIS	SURFACE COPC Metals/TOC/AVS/SEM	SUBSURFACE COPC Metals/TOC	Chronology Cesium-137 and Lead-210	Grain-Size Distribution	Physical Characteristics	Consolidation Test	Select COPC Metals/TOC (Dissolved)/Total Hardness (CaCO3) & pH	COPC Metals	Taxonomy and Counts	28-Day Bioassay
SED144		Х								
SED145		Х								
SED146		Х								
SED147				Х	Х					
SED148				Х						
SED149		Х				Х				
SED150				Х	Х					
SED151		Х								
SED152		Х								
SED153		Х								
SED154		Х								
SED155		Х								

Notes:

X = Sample collected

$$\label{eq:NR} \begin{split} NR = & \text{No sample collected due to low recovery of sample volume} \\ \text{Shade} = & \text{Proposed and adjusted sampling location (sample not collected)} \end{split}$$

Shade/bold = new sample location

TABLE 8

SEDIMENT DATA - 2006 STUDY NEAR-SITE LOCATIONS

Sample ID: Sample Depth (ft): Date Collected:	Benchmark	Units	SED111 0 - 0.5 9/14/2006	SED111 0 - 0.5 10/11/2006	SED112 0 - 0.5 9/13/2006	SED113 0 - 0.5 9/13/2006	SED113 0 - 0.5 10/11/2006	SED114 0 - 0.5 9/13/2006	SED115 0 - 0.5 9/12/2006	SED116 0 - 0.5 9/12/2006	SED117 0 - 0.5 9/18/2006	SED118 0 - 0.5 9/19/2006
Inorganics												
Chromium (Total)		mg/kg	56	52	69.4	13.8	13.9	60.8	47.5	63.5	36.1	16
Copper		mg/kg	65.6	65.2	76.3	9.3	10.2	28.4	60.5	77.6	38.2	12.2
Lead		mg/kg	66.2 J	64.9	80.7 J	15.8 J	14.3	29.1 J	65.7 J	76.2 J	129 J	19.5
Mercury		mg/kg	0.67	0.58	0.89	0.09	0.08	0.27	0.5	0.94	0.48	0.04 U
Zinc		mg/kg	164	168	177	43.1	43.4	72.2	139	181	121	52.3
Simultaneously Extracted Met	tals (SEM)											
Cadmium		umol/g	0.00169	0.00231	0.00338	0.000623	0.000623	0.00124	0.00294	0.00214	0.0024	0.000623
Copper		umol/g	0.0393 J	0.268 J	0.0928 J	0.0645 J	0.0724 J	0.127 J	0.0409 J	0.0268 J	0.0126 J	0.0724 J
Lead		umol/g	0.142 J	0.186	0.23 J	0.0507 J	0.0454	0.1 J	0.183 J	0.161 J	0.158 J	0.0217
Nickel		umol/g	0.0528	0.0886	0.0579	0.0256	0.0392	0.0358	0.0426	0.0511	0.0443	0.075
Silver		umol/g	0.00191 U	0.002 U	0.00197 U	0.0011 U	0.00109 U	0.00126 U	0.00161 U	0.00204 U	0.00137 U	0.00106 U
Zinc		umol/g	0.843	1.12	1.08	0.312	0.31	0.73	0.899	0.98	0.896	0.317
Acid Volatile Sulfide (AVS)												
Acid Volatile Sulfide		umol/g	7.81	2.25	2.14 U	1.21 U	1.19 U	1.59	1.2 J	3.27	5.69	1.26 UJ
Total Organic Carbon (TOC)												
TOC		mg/kg	21,600	18,700	20,000	1,630	1,700	10,400	15,600	16,700	15,200	5,630
Organic Carbon Fraction			0.0216	0.0187	0.02	0.00163	0.0017	0.0104	0.0156	0.0167	0.0152	0.00563
AVS / SEM Parameter												
(∑SEM - AVS)/foc	130	umol/goc	-312	-31	20	-93	-75	-57	36	-123	-301	-25

TABLE 8

SEDIMENT DATA - 2006 STUDY NEAR-SITE LOCATIONS

Sample ID: Sample Depth (ft): Date Collected:	Lowest AVS Benchmark (bold)	Units	SED119 0 - 0.5 9/21/2006	SED120 0 - 0.5 10/10/2006	SED121 0 - 0.5 9/19/2006	SED122 0 - 0.5 10/10/2006	SED123 0 - 0.5 9/19/2006	SED124 0 - 0.5 9/19/2006	SED125 0 - 0.5 10/4/2006	SED126 0 - 0.5 10/4/2006	SED127 0 - 0.5 9/19/2006	SED128 0 - 0.5 9/19/2006
Inorganics												
Chromium (Total)		mg/kg	43.5	56.3	61.6	30.3	102	62.2	97.2	148	55.5	57.2
Copper		mg/kg	43.2	75	59.9	30.5	135	68.1	152	111	65.9	65
Lead		mg/kg	45.3	77.9	89	29.8	122	77.5	130	1,520	67.7	66.5
Mercury		mg/kg	0.35	1.1	0.95	0.22	1.8	0.68	1.2	0.27	0.63	0.67
Zinc		mg/kg	122	152	186	93.6	269	197	269	1,260	174	175
Simultaneously Extracted Met	als (SEM)											
Cadmium		umol/g	0.00249	0.00445	0.004	0.00133	0.00427	0.004	0.00534	0.00614 J	0.00356	0.00329
Copper		umol/g	0.175 J	0.319 J	0.115 J	0.0708 J	0.0818 J	0.239 J	0.538 J	0.579 J	0.101 J	0.112 J
Lead		umol/g	0.0709	0.222	0.183	0.0695	0.229	0.215	0.329	3.23	0.181	0.191
Nickel		umol/g	0.0954	0.0801	0.0971	0.0716	0.124	0.138	0.143	0.412	0.121	0.133
Silver		umol/g	0.00184 U	0.00145 U	0.00146 U	0.0015 U	0.00194 U	0.0021 U	0.00172 U	0.00109 UJ	0.00184 U	0.00219 U
Zinc		umol/g	0.65	1.03	1.41	0.482	1.68	1.68	1.9	17.3 J	1.4	1.25
Acid Volatile Sulfide (AVS)												
Acid Volatile Sulfide		umol/g	2.43 J	4.54	2.84 J	3.88	6.23 J	27.7 J	8.1	4.67	7.64 J	9.62 J
Total Organic Carbon (TOC)												
TOC		mg/kg	33,900	10,900	23,700	14,200	27,500	29,500	27,700	7,700	24,700	29,400
Organic Carbon Fraction			0.0339	0.0109	0.0237	0.0142	0.0275	0.0295	0.0277	0.0077	0.0247	0.0294
AVS / SEM Parameter												
(∑SEM - AVS)/foc	130	umol/goc	-42	-265	-43	-224	-149	-862	-187	2189	-236	-270

TABLE 8

SEDIMENT DATA - 2006 STUDY NEAR-SITE LOCATIONS

Sediment Remedial Investigation Report Former General Motors North Tarrytown Assembly Plant Sleepy Hollow, New York

Sample ID: Sample Depth (ft): Date Collected:	Benchmark	Units	SED129 0 - 0.5 10/10/2006	SED130 0 - 0.5 10/10/2006	SED131 0 - 0.5 10/10/2006	SED132 0 - 0.5 10/10/2006	SED133 0 - 0.5 10/10/2006	SED134 0 - 0.5 10/10/2006	SED135 0 - 0.5 10/10/2006	SED136 0 - 0.5 10/10/2006	SED137 0 - 0.5 10/10/2006	SED138 0 - 0.5 10/12/2006	SED139 0 - 0.5 9/20/2006
Inorganics													
Chromium (Total)		mg/kg	35.4	110	74.2	83.8	44	57.7	65.8	69.2	48.1	52.2	24.4
Copper		mg/kg	75.2	112	78.3	116	91.1	67.8	84.8	128	70.2	84.1	11.5
Lead		mg/kg	70	151	92.9	116	92.7	68.3	85.6	102	66	77.4	10.2
Mercury		mg/kg	0.81	1.6	2.3	2.6	1	2.6	1.5	1.3	1.4	1	0.05 U
Zinc		mg/kg	154	265	182	207	185	155	160	201	148	162	62.9
Simultaneously Extracted Me	tals (SEM)												
Cadmium		umol/g	0.00169	0.0089	0.0072	0.00649	0.00294	0.00712	0.00516	0.00347	0.00302	0.00374	0.00089
Copper		umol/g	0.271 J	0.533 J	0.338 J	0.411 J	0.319 J	0.363 J	0.239 J	0.544 J	0.258 J	0.529 J	0.0393 J
Lead		umol/g	0.245	0.492	0.362	0.312	0.299	0.305	0.253	0.311	0.258	0.229	0.0154
Nickel		umol/g	0.0937	0.157	0.112	0.0971	0.0988	0.102	0.0937	0.104	0.0903	0.0818	0.0647
Silver		umol/g	0.00152 U	0.00184 U	0.00159 U	0.00169 U	0.00152 U	0.00179 U	0.00163 U	0.00158 U	0.00157 U	0.00159 U	0.00127 U
Zinc		umol/g	1.31	2.32	1.76	1.52	1.51	1.49	1.43	1.64	1.34	1.25	0.321
Acid Volatile Sulfide (AVS)													
Acid Volatile Sulfide		umol/g	8.13	5.94	4.05	9.94	5.43	4.17	3.89	7.16	6.55	1.76 J	1.60 UJ
Total Organic Carbon (TOC)													
TOC		mg/kg	18,600	24,100	10,600	19,400	15,600	17,400	21,200	16,400	21,300	12,400	11,600
Organic Carbon Fraction			0.0186	0.0241	0.0106	0.0194	0.0156	0.0174	0.0212	0.0164	0.0213	0.0124	0.0116
AVS / SEM Parameter									•			•	
(SEM - AVS)/foc	130	umol/goc	-334	-101	-139	-391	-205	-109	-88	-278	-216	98	-31

Notes:

1. For SEM and AVS non-detects ("U" or "UJ"), half value of the detection limits was used to calculate (SEM - AVS)/foc.

2. Bolded value represents a value exceeding the lowest AVS benchmark.

mg/kg = milligrams per kilogram (concentration in parts per million)

Data Qualifiers:

J = Indicates an estimated value

U = Indicates that the analyte was analyzed for but not detected

TABLE 9 SEDIMENT DATA - 2006 STUDY BACKGROUND LOCATIONS

Sample ID: Sample Depth (ft): Date Collected:	Benchmark	Units	SED100 0 - 0.5 9/20/2006	SED101 0 - 0.5 9/20/2006	SED102 0 - 0.5 9/20/2006	SED103 0 - 0.5 9/20/2006	SED104 0 - 0.5 9/21/2006	SED105 0 - 0.5 9/21/2006
Inorganics							-	
Chromium (Total)		mg/kg	8.4	15.4	40.2	89.4	46.1	41.3
Copper		mg/kg	8.3	11	33.3	75.1	56.3	44.5
Lead		mg/kg	6.3	10.6	34.1	87.2	65.6	77.5
Mercury		mg/kg	0.2	0.12	0.34	0.69	0.46	0.99
Zinc		mg/kg	28.7	43.2	115	205	176	142
Simultaneously Extracted Me	etals (SEM)						•	
Cadmium		umol/g	0.00089	0.00133	0.00089	0.0064	0.00489	0.00187
Copper		umol/g	0.0488 J	0.0834 J	0.0708 J	0.127 J	0.112 J	0.184 J
Lead		umol/g	0.0169	0.0347	0.0323	0.24	0.138	0.171
Nickel		umol/g	0.0238	0.0494	0.0392	0.153	0.123	0.0886
Silver		umol/g	0.00103 U	0.00117 U	0.00173 U	0.0021 U	0.00173 U	0.00157 U
Zinc		umol/g	0.153	0.303	0.315	1.8	1.5	0.794
Acid Volatile Sulfide (AVS)				•				•
Acid Volatile Sulfide		umol/g	1.12 UJ	1.39 UJ	1.85 UJ	8.54 J	1.56 J	5.12 J
Total Organic Carbon (TOC)				•	•	•	•	•
TOC		mg/kg	1,280	7,920	16,700	18,500	23,700	19,400
Organic Carbon Fraction			0.00128	0.00792	0.0167	0.0185	0.0237	0.0194
AVS / SEM Parameter				•	•	•	•	•
(SEM - AVS)/foc	130	umol/goc	-247	-28	-28	-336	13	-200

TABLE 9 SEDIMENT DATA - 2006 STUDY BACKGROUND LOCATIONS

Sediment Remedial Investigation Report Former General Motors North Tarrytown Assembly Plant Sleepy Hollow, New York

Sample ID: Sample Depth (ft): Date Collected:	Benchmark	Units	SED106 0 - 0.5 9/20/2006	SED107 0 - 0.5 9/13/2006	SED108 0 - 0.5 9/18/2006	SED109 0 - 0.5 9/13/2006	SED109-DUP 0 - 0.5 9/13/2006	SED110 0 - 0.5 9/18/2006
Inorganics							•	
Chromium (Total)		mg/kg	31.2	24.4	31	35	35	23
Copper		mg/kg	17.9	12.7	23.6	48.8	50.7	12.8
Lead		mg/kg	16.4	11 J	23.2 J	76.3 J	58.1 J	10.8 J
Mercury		mg/kg	0.08	0.05 U	0.21	0.89	0.69	0.05 U
Zinc		mg/kg	89.5	63.3	87.2	140	135	63.7
Simultaneously Extracted Me	etals (SEM)					•		
Cadmium		umol/g	0.000694 U	0.000676 U	0.00107	0.000978	0.00116	0.000712 U
Copper		umol/g	0.0378 J	0.0236 J	0.0629 J	0.135 J	0.153 J	0.0236 J
Lead		umol/g	0.0159	0.0154 J	0.07 J	0.185 J	0.175 J	0.0198 J
Nickel		umol/g	0.0409	0.0272	0.0272	0.0426	0.0477	0.0256
Silver		umol/g	0.00144 U	0.00141 U	0.00182 U	0.00165 U	0.00154 U	0.00147 U
Zinc		umol/g	0.216	0.297	0.421	0.798	0.898	0.263
Acid Volatile Sulfide (AVS)				•			•	
Acid Volatile Sulfide		umol/g	1.98 UJ	1.55 U	2 U	1.79 U	2.31	1.6 U
Total Organic Carbon (TOC)						•		
TOC		mg/kg	14,700	11,300	11,900	14,700	17,400	10,700
Organic Carbon Fraction			0.0147	0.0113	0.0119	0.0147	0.0174	0.0107
AVS / SEM Parameter	-			•	•	•	•	
(∑SEM - AVS)/foc	130	umol/goc	-46	-36	-35	18	-59	-44

Notes:

1. For SEM and AVS non-detects ("U" or "UJ"), half value of the detection limits was used to calculate (SEM - AVS)/foc.

mg/kg = milligrams per kilogram (concentration in parts per million)

Data Qualifiers:

J = Indicates an estimated value

U = Indicates that the analyte was analyzed for but not detected

TABLE 10 PORE WATER DATA NEAR-SITE LOCATIONS

Sample ID:						SED111	SED112	SED113	SED114	SED115	SED116	SED117	SED119	SED120
Sample Depth (ft):	Freshwater C			Saltwater Criteria (mg/L)		0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5
		USEPA		USEPA										
	NYS Class B	NAWQC	NYS Class	NAWQC										
Date Collected:	(Chronic)	(000)	SB (Chronic)	(000)	Units	10/11/2006	9/13/2006	9/13/2006	9/13/2006	9/12/2006	9/12/2006	9/18/2006	9/21/2006	10/10/2006
Inorganics														
Chromium	0.2307	0.2307	0.054	0.05	mg/L	0.0084 J	0.0060 J	0.0053 J	0.0071 J	0.0086 J	0.0091 J	0.0087 J	0.0054 J	0.0053 J
Copper	0.0293	0.0293	0.0034	0.0031	mg/L	0.0061 J	0.0060 J	0.0043 J	<i>0.0185</i> J	0.0053 J	0.0056 J	0.0059 J	0.0066 J	0.0171 J
Lead	0.0165	0.0109	0.008	0.0081	mg/L	0.0030 U	0.0030 U	0.0030 U	0.0077 J	0.0041 J	0.0030 U	0.0039 J	0.0030 U	0.0030 U
Mercury	0.00077	0.00077	0.00077	0.00094	mg/L	0.00003 U	0.00010 U	0.00003 U	0.00004 U	0.00004 U	0.00003 U	0.00007 U	0.00004 U	0.00009 U
Zinc	0.2685	0.3824	0.066	0.081	mg/L	0.0022 U	0.0022 U	0.0022 U	0.0022 U	0.0022 U	0.0022 U	0.0022 U	0.0022 U	0.0022 U
Miscellaneous														
Hardness					mg/L	1,340	1,620	1,860	1,190	1,360	1,320	1,380	1,600	1,100
pH (lab)					s.u.	7.79	7.82	7.64	7.89	7.84	7.75	7.92	7.67	7.97
Organic Carbon - Filtered														
Soluble Organic Carbon					mg/L	13.70	9.75	8.91	7.54	12.60	12.60	12.80	11.60	14.40

TABLE 10 PORE WATER DATA NEAR-SITE LOCATIONS

Sample ID:						SED121	SED122	SED123	SED124	SED125	SED127	SED128	SED129	SED130
Sample Depth (ft):	Freshwater C	riteria (mg/L)	Saltwater Cr	iteria (mg/L)		0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5
		USEPA		USEPA										
	NYS Class B	NAWQC	NYS Class	NAWQC										
Date Collected:	(Chronic)	(000)	SB (Chronic)	(000)	Units	9/19/2006	10/10/2006	9/19/2006	9/19/2006	10/4/2006	9/19/2006	9/19/2006	10/10/2006	10/10/2006
Inorganics														
Chromium	0.2307	0.2307	0.054	0.05	mg/L	0.0062 J	0.0058 J	0.0056 J	0.0085 J	0.0114	0.0063 J	0.0100 J	0.0053 J	0.0117
Copper	0.0293	0.0293	0.0034	0.0031	mg/L	0.0051 J	0.0073 J	0.0045 J	0.0049 J	0.0082 J	0.0057 J	0.0041 J	0.0050 J	0.0188 J
Lead	0.0165	0.0109	0.008	0.0081	mg/L	0.0030 U	0.0030 U	0.0030 U	0.0030 U	0.0030 U	0.0030 U	0.0030 U	0.0030 U	0.0062 J
Mercury	0.00077	0.00077	0.00077	0.00094	mg/L	0.00003 U	0.00002 U	0.00004 U	0.00002 U	0.00004 U	0.00003 U	0.00002 U	0.00004 U	0.00010 U
Zinc	0.2685	0.3824	0.066	0.081	mg/L	0.0022 U	0.0022 U	0.0022 U	0.0022 U	0.0027 J	0.0022 U	0.0022 U	0.0022 U	0.0022 U
Miscellaneous														
Hardness					mg/L	1,410	1,450	1,640	1,390	1,120	1,490	1,390	1,150	1,300
pH (lab)					s.u.	7.78	7.74	7.83	7.63	7.74	7.88	7.96	7.7	7.8
Organic Carbon - Filtered														
Soluble Organic Carbon					mg/L	10.10	11.80	8.69	14.90	14.70	8.83	13.60	16.20	10.90

TABLE 10 PORE WATER DATA NEAR-SITE LOCATIONS

Sediment Remedial Investigation Report Former General Motors North Tarrytown Assembly Plant Sleepy Hollow, New York

Sample ID:						SED131	SED132	SED133	SED134	SED135	SED136	SED137	SED138	SED139
Sample Depth (ft):	Freshwater C	riteria (mg/L)	Saltwater Cr	iteria (mg/L)		0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5
		USEPA		USEPA										
	NYS Class B	NAWQC	NYS Class	NAWQC										
Date Collected:	(Chronic)	(000)	SB (Chronic)	(CCC)	Units	10/10/2006	10/10/2006	10/10/2006	10/10/2006	10/10/2006	10/10/2006	10/10/2006	10/12/2006	9/20/2006
Inorganics														
Chromium	0.2307	0.2307	0.054	0.05	mg/L	0.0100	0.0135	0.0073 J	0.0207	0.0116	0.0055 J	0.0074 J	0.0086 J	0.0055 J
Copper	0.0293	0.0293	0.0034	0.0031	mg/L	0.0067 J	0.0133 J	0.0064 J	0.0195 J	0.0109 J	0.0050 J	0.0080 J	0.0081 J	0.0055 J
Lead	0.0165	0.0109	0.008	0.0081	mg/L	0.0030 U	0.0055 J	0.0030 U	0.0144 J	0.0054 J	0.0030 U	0.0030 U	0.0055 J	0.0030 U
Mercury	0.00077	0.00077	0.00077	0.00094	mg/L	0.00016 U	0.00012 U	0.00003 U	0.00033 U	0.00015 U	0.00002 U	0.00007 U	0.00005 U	0.00004 U
Zinc	0.2685	0.3824	0.066	0.081	mg/L	0.0022 U	0.0022 U	0.0022 U	0.0155 J	0.0022 U	0.0022 U	0.0022 U	0.0022 U	0.0027 J
Miscellaneous														
Hardness					mg/L	1,220	1,260	1,220	1,250	1,220	1,210	1,280	1,460	1,260
pH (lab)					s.u.	7.72	7.94	7.83	7.96	8.02	7.85	7.82	8.01	8.09
Organic Carbon - Filtered														
Soluble Organic Carbon					mg/L	13.20	15.80	13.30	13.30	18.10	12.60	15.50	13.90	18.40

Notes:

1. New York Criteria: Values obtained from New York State Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations, Division of Water Technical and Operational Guidance Series (1.1.1), Reissued June, 1998.

2. For saltwater criteria: Per 6 NYCRR Part 701 Classifications-Surface Waters and Groundwaters, Section §701.11 Class SB saline surface waters are primary and secondary contact recreation and fishing. These waters shall be suitable for fish propagation a

3. Saltwater criteria: Value for total chromium, copper, lead, and zinc obtained using New York State Clas SB aquatic chronic A(C) criteria (protection for fish propagation in saline waters).

4. NY saltwater criteria: Value listed for mercury in New York State Class SB waters is defaulted to the New York State fresh water Class B aquatic chronic A(C) criteria, in the dissolved form. The only available Class SB criterion is for the protection o

5. Saltwater value for chromium reported in hexavalent form, and applies to acid-soluble form.(data collected as total chromium)

6. Saltwater criteria: Standard value for copper is 3.4 ug/L (0.0034 mg/L), except in New York/New Jersey Harbor where it is 5.6 ug/L (0.0056 mg/L).

7. Saltwater criteria: Source: USEPA National Recommended Water Quality Criteria: 2006. Current online table provided at: http://www.epa.gov/waterscience/criteria/nrwqc-2006.pdf

8. Freshwater criteria for dissolved metals of CCC from USEPA National Recommended Water Quality Criteria: 2002.

9. Pore water duplicates at four near-Site locations (SED-120, SED-134, SED-135, and SED-136) could not be analyzed due to insufficient pore water volume. In these cases the duplicates were combined with their parent samples to provide sufficient volumes

10. Hardness is set to a maximum of 400 mg/L for freshwater criteria per USEPA National Recommended Water Quality Criteria: 2002.

CCC = Criteria Continuous Concentrations for dissolved metals in saltwater or freshwater.

Chromium (VI) CCC saltwater criteria used to represent total chromium

mg/L = milligrams per liter

s.u. = standard units

Data Qualifiers:

NA = Not analyzed

U = Indicates that the analyte was analyzed for but not detected

J = Values is estimated

Shading = Value greater than the New York State Class SB Ambient Water Quality Criteria

Italic values are greater than the Saltwater CCC Criteria

TABLE 11 PORE WATER DATA BACKGROUND LOCATIONS

Sample ID:						SED101	SED102	SED103	SED104	SED105
Sample Depth (ft):	Freshwater C	riteria (mg/L)	Saltwater Cri	teria (mg/L)		0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5
Date Collected:	NYS Class B (Chronic)	USEPA NAWQC (CCC)	NYS Class SB (Chronic)	USEPA NAWQC (CCC)	Units	9/20/2006	9/20/2006	9/20/2006	9/21/2006	9/21/2006
Inorganics										
Chromium	0.2307	0.2307	0.054	0.05	mg/L	0.0061 J	0.0046 J	0.0081 J	0.0056 J	0.0078 J
Copper	0.0293	0.0293	0.0034	0.0031	mg/L	0.0107 J	0.0046 J	0.0096 J	0.0050 J	0.0103 J
Lead	0.0165	0.0109	0.008	0.0081	mg/L	0.0030 U	0.0030 U	0.0045 J	0.0030 U	0.0071
Mercury	0.00077	0.00077	0.00077	0.00094	mg/L	0.00005 U	0.00003 U	0.00006 U	0.00005 U	0.00008 U
Zinc	0.2685	0.3824	0.066	0.081	mg/L	0.0042 J	0.0022 U	0.0022 U	0.0022 U	0.0022 U
Miscellaneous										
Hardness					mg/L	1,160	1,270	1,310	1,150	1,110
pH (lab)					s.u.	7.82	7.9	7.89	8	7.84
Organic Carbon - Filtered										
Soluble Organic Carbon					mg/L	7.97	6.2	10.5	8.38	13.4

TABLE 11 PORE WATER DATA SUMMARY BACKGROUND LOCATIONS

Sediment Remedial Investigation Report Former General Motors North Tarrytown Assembly Plant Sleepy Hollow, New York

Sample ID:						SED106	SED107	SED108	SED109	SED109-DUP
Sample Depth (ft):	Freshwater C	riteria (mg/L)	Saltwater Cri	teria (mg/L)		0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5
Date Collected:	NYS Class B (Chronic)	USEPA NAWQC (CCC)	NYS Class SB (Chronic)	USEPA NAWQC (CCC)	Units	9/20/2006	9/18/2006	9/18/2006	9/13/2006	9/13/2006
Inorganics	(0	()	(,	()	00	0/20/2000	0,10,2000	0/10/2000	0/10/2000	0/10/2000
Chromium	0.2307	0.2307	0.054	0.05	mg/L	0.0033 J	0.0033 J	0.0050 J	0.0066 J	0.0039 J
Copper	0.0293	0.0293	0.0034	0.0031	mg/L	0.0052 J	0.0037 J	0.0070 J	0.0113 J	0.0112 J
Lead	0.0165	0.0109	0.008	0.0081	mg/L	0.0030 U	0.0030 U	0.0033 J	0.0066 J	0.0062 J
Mercury	0.00077	0.00077	0.00077	0.00094	mg/L	0.00003 U	0.00002 U	0.00004 U	0.00009 U	0.00008 U
Zinc	0.2685	0.3824	0.066	0.081	mg/L	0.0022 U	0.0022 U	0.0032 U	0.0040 U	0.0040 U
Miscellaneous										
Hardness					mg/L	1,090	1,200	1,350	1,290	1,300
pH (lab)					s.u.	7.95	7.94	7.74	7.82	7.95
Organic Carbon - Filtered										
Soluble Organic Carbon					mg/L	10.1	20.1	14.2	12.3	13

Notes:

1. New York Criteria: Values obtained from New York State Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations, Division of Water Technical and Operational Guidance Series (1.1.1), Reissued June, 1998.

2. For saltwater criteria: Per 6 NYCRR Part 701 Classifications-Surface Waters and Groundwaters, Section §701.11 Class SB saline surface waters are primary and secondary contact recreation and fishing. These waters shall be suitable for fish propagation a

3. Saltwater criteria: Value for total chromium, copper, lead, and zinc obtained using New York State Class SB aquatic chronic A(C) criteria (protection for fish propagation in saline waters).

4. NY saltwater criteria: Value listed for mercury in New York State Class SB waters is defaulted to the New York State fresh water Class B aquatic chronic A(C) criteria, in the dissolved form. The only available Class SB criterion is for the protection o

5. Saltwater value for chromium reported in hexavalent form, and applies to acid-soluble form.(data collected as total chromium)

6. Saltwater criteria: Standard value for copper is 3.4 ug/L (0.0034 mg/L), except in New York/New Jersey Harbor where it is 5.6 ug/L (0.0056 mg/L).

7. Saltwater criteria: Source: USEPA National Recommended Water Quality Criteria: 2006. Current online table provided at: http://www.epa.gov/waterscience/criteria/nrwqc-2006.pdf

8. Freshwater criteria for dissolved metals of CCC from USEPA National Recommended Water Quality Criteria: 2002.

9. Pore water duplicates at four near-Site locations (SED-120, SED-134, SED-135, and SED-136) could not be analyzed due to insufficient pore water volume. In these cases the duplicates were combined with their parent samples to provide sufficient volumes

10. Hardness is set to a maximum of 400 mg/L for freshwater criteria per USEPA National Recommended Water Quality Criteria: 2002.

CCC = Criteria Continuous Concentrations for dissolved metals in saltwater or freshwater.

Chromium (VI) CCC saltwater criteria used to represent total chromium

mg/L = milligrams per liter

s.n. = standard units

Data Qualifiers:

NA = Not analyzed

U = Indicates that the analyte was analyzed for but not detected

J = Values is estimated

Shading = Value greater than the New York State Class SB Ambient Water Quality Criteria

Italic values are greater than the Saltwater CCC Criteria

TABLE 12 PORE WATER DATA SUMMARY

Sediment Remedial Investigation Report Former General Motors North Tarrytown Assembly Plant Sleepy Hollow, New York

	Near-Site									
				Freshwater	Standards			Saltwater	Standards	
			NYS Class	A (Chronic)	USEPA AV	VQC (CCC)	NYS C	lass B	USEPA AV	VQC (CCC)
	Frequency of	Range of Detected	Criteria	No.	Criteria	No.	Criteria	No.	Criteria	No.
COPC	Detection	Concentrations (mg/L)	(mg/L)	Exceeding	(mg/L)	Exceeding	(mg/L)	Exceeding	(mg/L)	Exceeding
Chromium	27 / 27	0.0053 - 0.0207	0.2307	0	0.2307	0	0.054	0	0.05	0
Copper	27 / 27	0.0041 - 0.0195	0.0293	ő	0.0293	ő	0.0034	27	0.0031	27
Lead	8 / 27	ND - 0.0144	0.0165	ő	0.0109	ő	0.008	1	0.0081	1
Mercury	0 / 27	ND - ND	0.00077	0	0.00077	0	0.00077	0	0.00094	0
Zinc	3 / 27	ND - 0.0155	0.2685	0	0.3824	0	0.066	0	0.081	0
	Background	•								•
				Freshwater	Standards			Saltwater	Standards	
			NYS Class	A (Chronic)	USEPA AV	VQC (CCC)	NYS C	lass B	USEPA AV	VQC (CCC)
	Frequency of	Range of Detected	Criteria	No.	Criteria	No.	Criteria	No.	Criteria	No.
COPC	Detection	Concentrations (mg/L)	(mg/L)	Exceeding	(mg/L)	Exceeding	(mg/L)	Exceeding	(mg/L)	Exceeding
Chromium	10 / 10	0.0033 - 0.0081	0.2307	0	0.2307	0	0.054	0	0.05	0
Copper	10 / 10	0.0037 - 0.0113	0.0293	0	0.0293	0	0.0034	10	0.0031	10
Lead	5 / 10	ND - 0.0071	0.0165	0	0.0109	0	0.008	0	0.0081	0
Mercury	0 / 10	ND - ND	0.00077	0	0.00077	0	0.00077	0	0.00094	0
Zinc	1 / 10	ND - 0.0042	0.2685	0	0.3824	0	0.066	0	0.081	0

Notes:

1. New York Criteria: Values obtained from New York State Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations, Division of Water Technical and Operational Guidance Series (1.1.1), Reissued June, 1998.

2. For saltwater criteria: Per 6 NYCRR Part 701 Classifications-Surface Waters and Groundwaters, Section §701.11 Class SB saline surface waters are primary and secondary contact recreation and fishing. These waters shall be suitable for fish propagation and survival. Per 6 NYCR

3. Saltwater criteria: Value for total chromium, copper, lead, and zinc obtained using SB water class, and the aquatic chronic A(C) criteria (protection for fish propagation in saline waters).

4. NY saltwater criteria: Value for mercury is represented as the fresh water class value for the A(C) criteria, in the dissolved form. The corresponding saline value is for the protection of wildlife and is not applicable. 5. Saltwater value for chromium reported in hexavalent form, and applies to acid-soluble form.(data collected as total chromium)

6. Saltwater criteria: Standard value for copper is 3.4 ug/L (0.0034 mg/L), except in New York/New Jersey Harbor where it is 5.6 ug/L (0.0056 mg/L).

7. Saltwater criteria: Source: USEPA National Recommended Water Quality Criteria: 2006. Current online table provided at: http://www.epa.gov/waterscience/criteria/nrwqc-2006.pdf

8. Freshwater criteria for dissolved metals of CCC from USEPA National Recommended Water Quality Criteria: 2002.

9. Hardness is set to a maximum of 400 mg/L for freshwater criteria per USEPA National Recommended Water Quality Criteria: 2002.

CCC = Criteria Continuous Concentrations for dissolved metals in saltwater or freshwater Chromium (VI) CCC saltwater criteria used to represent total chromium

mg/L = milligrams per liter s.u. = standard units

ND = Not detected

G:\Project Docs\Div20\Iryfun - 11222\LAR12\GM Tarrytown\0161211222_T12.xls

TABLE 13SEDIMENT TOXICITY DATANEAR-SITE AND BACKGROUND LOCATIONS

			Growth	Mean No. of	Mean No. of
				Juveniles per	Offspring per
Field ID	Lab ID	Percent survival	(mg - dry weight)	Amphipod	Female
Lab Control A	Lab A	81.87%	0.5912	0.30	0.72
Lab Control B	Lab B	89.37%	0.3372	0.32	0.70
Lab Control C	Lab B	96.25%	1.0864	0.36	0.77
SED100	Ref Site 01	88.33%	1.5820	0.87	1.82
SED101	Ref Site 02	83.13%	1.1454	0.25	0.49
SED102	Ref Site 03	91.25%	1.1483	0.44	0.93
SED103	Ref Site 04	89.38%	1.0091	0.52	1.12
SED104	Ref Site 05	90.00%	1.3507	1.77	3.74
SED105	Ref Site 06	82.50%	1.1874	0.36	0.92
SED106	Ref Site 07	88.75%	1.0050	0.27	0.53
SED107	Ref Site 08	73.75%	0.3891	0.10	0.28
SED108	Ref Site 09	81.88%	0.6211	0.06	0.17
SED109	Ref Site 10	43.13%	0.3767	0.16	0.38
SED110	Ref Site 11	77.50%	0.5973	0.09	0.19
SED115		82.50%	0.6371	0.22	0.52
SED116		83.75%	0.5822	0.16	0.29
SED114		88.13%	0.5823	0.09	0.24
SED113		78.13%	0.4374	0.12	0.24
SED112		87.50%	0.5012	0.20	0.57
SED111		76.88%	0.4099	0.18	0.35
SED117		77.50%	0.8593	0.22	0.44
SED118		85.63%	0.8649	0.24	0.57
SED121		80.63%	0.9256	0.15	0.31
SED124		90.63%	1.0458	0.37	0.77
SED128		88.13%	0.7943	0.30	0.68
SED127		83.13%	0.8102	0.22	0.46
SED123		89.38%	0.9517	0.63	1.26
SED139		83.75%	0.6022	0.42	0.95
SED138		87.50%	1.2547	1.04	2.29
SED119		87.50%	1.4536	1.55	3.36
SED125		88.75%	1.1907	0.51	1.71
SED126		86.80%	1.1583	0.37	0.90
SED122		90.00%	0.5861	0.28	0.65
SED129		79.79%	0.6210	0.30	0.69
SED130		83.13%	0.6182	0.34	0.77
SED131		91.25%	1.1680	0.62	1.43
SED132		75.63%	1.2721	0.26	0.49
SED133		68.13%	1.0888	0.39	0.84
SED134		76.88%	1.4335	0.47	1.07
SED135		83.13%	1.3232	0.51	1.07
SED133		88.75%	1.4241	0.53	1.31
SED120		70.00%	1.3173	0.59	1.28

TABLE 14 BACKGROUND TOXICITY TOLERANCE LIMIT SUMMARY

Sediment Remedial Investigation Report Former General Motors North Tarrytown Assembly Plant Sleepy Hollow, New York

Survival						
Reference Data Selected	Number of samples used (n)	Minimum Survival	Maximum Survival	Probability Distribution Type	Tolerance Limit Calculation Type	Survival Tolerance Limit (10th percentile) with lower 95 % Confidence Limit
All reference sites	11	43%	91%	Lognormal	Parametric	58.5%
Suspect reference site removed (SED-109)*	10	74%	91%	Normal	Parametric	76.1%
Growth	•					
Reference Data Selected	Number of samples used (n)	Minimum Growth (mg)	Maximum Growth (mg)	Probability Distribution Type	Tolerance Limit Calculation Type	Growth Tolerance Limit (10th percentile) with lower 95 % Confidence Limit (mg)
All reference sites	11	0.377	1.59	Normal	Parametric	0.377
Reproduction						
Reference Data Selected	Number of samples used (n)	Minimum Reproductive Success (amphipods/parent)	Maximum Reproductive Success (amphipods/parent)	Probability Distribution Type	Tolerance Limit Calculation Type	Reproduction Tolerance Limit (10th percentile) with lower 95 % Confidence Limit (amphipods/parent)
All reference sites (Juveniles per amphipod)	11	0.060	1.77	Lognormal	Parametric	0.064
All reference sites (Offspring per female)	11	0.170	3.74	Lognormal	Parametric	0.158

Note: * Mean survival in SED-109 was found to be an outlier (Dixon test, p < 0.01).

Area							Ba	ckgro	und						
Collection Date	9/	20/20	06	9/	20/20	06		20/20		9/	/20/20	06		21/20	
Location and depth (in)		D100 (D101 (D102 (D103 (D104 (
Sample	BBR1	BBR2	BBR3	BBR1	BBR2	BBR3	BBR1	BBR2	BBR3	BBR1	BBR2	BBR3	BBR1	BBR2	BBR3
Invertebrate Species															
Lowest Taxonomic Identification															
Annelida															
Oligochaeta															
Aulodrilus sp.	10	16	32												
Haplotaxidae															
Lumbricidae		2													
Naididae															
Tubificidae															
Polychaeta															
Heteromastus filiformis											2				
Hobsonia florida	134	150	136	21	8	30		1	2					2	1
Neanthes sp.	2		4												
Spiophanes sp.			4	10		8	3	1	2	2				1	2
Streblospio sp.															
Arthropoda				_					_	-		_	_	_	_
Crustacea															
Balanidae															
Balanus sp.			12												
Callinectes sapidus															
Corophium sp.															
Crangon sp.															
Cyathura polita	28	32	72			8	3	3		12	4	4	1	4	6
Edotea triloba															
Gammaridae															
Gammarus sp.				510	108	417	29	70	28	10	26	244		1	
Hyale sp.															
Leucon americanus			4												
Mysidae															
Palaemonetes sp.															
Panopeus sp.					4										
Insecta															
Chironomid pupa															
Clinotanypus sp.				94	32	38	8	31	24	6	4	8	2	10	54
Cricotopus bicinctus		8	76												
Cryptochironomus fulvus															
Dicrotendipes neomodestus	6														
Polypedilum sp.	8	6	40												
Procladius sp.			16												
Rheotanytarsus exiguus		6	28												
Rheotanytarsus sp.								1							
Tanypodinae							5								
Tanytarsus sp.						8									
Mollusca															
Amnicola sp.							1			2					
Crassostrea virginica															
Geukensia demissa															
Macoma balthica															
Macoma sp.	6		4	323	220	23	154	287	302	34	610	456		1	3
Mytilidae															
Rangia cuneata	1		1		1						2				
Nematoda			4												
Nemertea							1		2	2	2	8		2	
Total Organism	ns 195	220	433	958	373	532	204	394	360	68	650	720	3	21	66

Area							Ba	ckgro	und						
Collection Date	9/	/21/20	06	9/	20/20	06		/13/20		9/	/18/20	06		/13/20	
Location and depth (in)	SEI	D105	(0-6)	SEL	D106	(0-6)	SEI	D107	(0-6)	SE	D108	(0-6)	SEI	D109	(0-6)
Sample	BBR1	BBR2	BBR3	BBR1	BBR2	BBR3	BBR1	BBR2	BBR3	BBR1	BBR2	BBR3	BBR1	BBR2	BBR
Invertebrate Species															
Lowest Taxonomic Identification															
Annelida															
Oligochaeta															
Aulodrilus sp.															
Haplotaxidae											1				
Lumbricidae															
Naididae															
Tubificidae															
Polychaeta															
Heteromastus filiformis	1													1	
Hobsonia florida				8	6	1	5	10	1		3			1	
Neanthes sp.							2	2	1					1	
Spiophanes sp.	5	3	4	4	8	2	1	7	3	1		1	10		
Streblospio sp.	-	-			-				-			-			
Arthropoda		ļ	ļ						1	1	ļ	ļ	ļ		1
Crustacea															
Balanidae															1
Balanus sp.	5			6								1			
Callinectes sapidus	-			Ŭ											
Corophium sp.															
Crangon sp.															
Cyathura polita	5	9	1	4	2	2	2	5	3	2	1	1	3	1	
Edotea triloba	- U			-	~	~	~			~			0	-	
Gammaridae															
Gammarus sp.		1		86	140	23	13	1	7	8	5	1	177	30	7
Hyale sp.				00	140	25	15	-	'	0	5	1	3	50	
Leucon americanus								1					5		
Mysidae															
Palaemonetes sp.															
Panopeus sp.	1						1	2				1			
Insecta	-						1	2				1			
Chironomid pupa															
	55	38	38	74	32	16	4	4		4	11	3	28	17	5
Clinotanypus sp. Cricotopus bicinctus	55	30	30	74	32	10	4	4		4	11	3	20	17	5
Cryptochironomus fulvus															
Dicrotendipes neomodestus															
Polypedilum sp.															
Procladius sp.															
Rheotanytarsus exiguus															
Rheotanytarsus sp.															
Tanypodinae															
Tanytarsus sp.											<u> </u>	<u> </u>			
Mollusca									4		<u> </u>	<u> </u>			
Amnicola sp.				<u> </u>					1						<u> </u>
Crassostrea virginica				<u> </u>											<u> </u>
Geukensia demissa				<u> </u>											<u> </u>
Macoma balthica	-	60		10	50	_	<u> </u>						405	05	
Macoma sp.	7	29	4	40	52	8	64	89	70	2			135	35	
Mytilidae				<u> </u>		1	<u> </u>	2		<u> </u>	.	.	<u> </u>		1
Rangia cuneata				1			1			1	1	1	1		
Nematoda	_				.		4.0	-							_
Nemertea	3				4		10	5	1	<u> </u>	1			-	2
Total Organisr	ns 82	80	47	223	244	53	103	128	87	18	23	9	357	86	16

Area	Ba	ckgro	und						Near	-Site					
Collection Date	9/	/18/20	06		14/20		9/	13/20	06	9/	/13/20	06		/13/20	
Location and depth (in)		D110 (D111 (-	D112 (/		D113			D114	
Sample	BBR1	BBR2	BBR3	BBR1	BBR2	BBR3	BBR1	BBR2	BBR3	BBR1	BBR2	BBR3	BBR1	BBR2	BBR3
Invertebrate Species															
Lowest Taxonomic Identification															
Annelida		-	-								-				
Oligochaeta															
Aulodrilus sp.												2			
Haplotaxidae															
Lumbricidae															
Naididae															
Tubificidae															
Polychaeta															
Heteromastus filiformis				6	1	3		2						1	2
Hobsonia florida		1		1				2		1	4	8	4	1	6
Neanthes sp.				1	1	1				10	19	31			
Spiophanes sp.		2	1	2		2	5	10	21		3	4			
Streblospio sp.															
Arthropoda															
Crustacea															
Balanidae															
Balanus sp.															
Callinectes sapidus															
Corophium sp.															
Crangon sp.															
Cyathura polita		4		10	7	7	2	6	8	2	2	9	4	3	4
Edotea triloba									1			1	1		
Gammaridae															
Gammarus sp.		39	1				2	12	14	20	13	21	25	9	40
Hyale sp.															
Leucon americanus				8	1	11	2		13						
Mysidae															
Palaemonetes sp.															
Panopeus sp.															
Insecta															
Chironomid pupa											1				
Clinotanypus sp.		36	3	10	5	7	21	22	42			1	31	10	20
Cricotopus bicinctus															
Cryptochironomus fulvus														1	
Dicrotendipes neomodestus															
Polypedilum sp.										1					
Procladius sp.															
Rheotanytarsus exiguus															
Rheotanytarsus sp.				1					1				1		1
Tanypodinae		i	i	<u> </u>					<u> </u>		i				
Tanytarsus sp.		i	i	<u> </u>					<u> </u>		i				
Mollusca				1					1				1		1
Amnicola sp.		l	l	l					l		l	2			
Crassostrea virginica													1		1
Geukensia demissa				1					1				1		1
Macoma balthica			1	1					1				1		1
Macoma sp.	4	4		8	2	3	4	6	29	7	4	5	72	23	114
Mytilidae	-			-		-		-			· ·			1	1
Rangia cuneata	1		1						1						
Nematoda	· ·		<u> </u>												
Nemertea		2		12	4	2		2	1			5		2	4
Total Organism	ns 5	88	6	58	21	36	36	62	130	41	46	89	137	51	190

Area							N	ear-Si	ite						
Collection Date	9/	12/20	06	9/	12/20	06	9/	18/20	06	9/	19/20	06	9/	21/20	06
Location and depth (in)		D115 (D116 (D117 (D118 (D119	
Sample	BBR1	BBR2	BBR3	BBR1	BBR2	BBR3	BBR1	BBR2	BBR3	BBR1	BBR2	BBR3	BBR1	BBR2	BBR3
Invertebrate Species															
Lowest Taxonomic Identification															
Annelida										r		r		1	
Oligochaeta															
Aulodrilus sp.															
Haplotaxidae															
Lumbricidae															
Naididae															
Tubificidae										1					
Polychaeta				-			_	_							
Heteromastus filiformis	1			2	1		5	2					4		
Hobsonia florida		1	1	1	1					3					
Neanthes sp.										2					
Spiophanes sp.							3	2	4	6	8	3			
Streblospio sp.	_									<u> </u>		<u> </u>	<u> </u>		
Arthropoda					-		-								
Crustacea															
Balanidae															
Balanus sp.										9	5				
Callinectes sapidus															
Corophium sp.										1	3	1			
Crangon sp.															
Cyathura polita	1		1	3			8	2	1	3	2	2	3	2	3
Edotea triloba						1									
Gammaridae							2								
Gammarus sp.	4	1	4	3	2	13		3	2	3		3	1		1
Hyale sp.					1										
Leucon americanus						1	1						5	2	1
Mysidae															
Palaemonetes sp.															
Panopeus sp.															
Insecta															
Chironomid pupa															
Clinotanypus sp.	20	27	2	39	15	35	2	3	1				19	1	3
Cricotopus bicinctus															
Cryptochironomus fulvus															
Dicrotendipes neomodestus															
Polypedilum sp.		_								1			1		
Procladius sp.	1	3					1								
Rheotanytarsus exiguus															
Rheotanytarsus sp.															
Tanypodinae															
Tanytarsus sp.		L				L				L		L			
Mollusca															
Amnicola sp.															
Crassostrea virginica										ļ		ļ			
Geukensia demissa										ļ		ļ			
Macoma balthica					1	1				<u> </u>		L	<u> </u>		
Macoma sp.	22	79	24	71	34	81	8		2	1		L	1	2	
Mytilidae						L				L		L			
Rangia cuneata										L		L			
Nematoda	1														
Nemertea	1		2		1		1	1	2		1		1	1	2
Total Organism	s 51	111	34	119	56	132	31	13	12	30	19	9	35	8	10

Area							N	ear-Si	ite						
Collection Date		/10/20			19/20		10	/10/20	006		19/20			19/20	
Location and depth (in)		D120 (D121 (D122 (D123 (D124 (
Sample	BBR1	BBR2	BBR3	BBR1	BBR2	BBR3	BBR1	BBR2	BBR3	BBR1	BBR2	BBR3	BBR1	BBR2	BBR3
Invertebrate Species															
Lowest Taxonomic Identification															
Annelida			1		r			r	r					r	
Oligochaeta															
Aulodrilus sp.								1							
Haplotaxidae															
Lumbricidae															
Naididae														1	
Tubificidae															
Polychaeta	-			4	-	0	•	_	_	-			7		0
Heteromastus filiformis	5			1	1	3	3	3	3	5	1		7	3	6
Hobsonia florida	-				2	1		1	1	-			1	2	3
Neanthes sp.	1	2	4	2		7	2	7	10	2	2	1	2		4
Spiophanes sp.	2	2	1	2		7	3	1		3	2		3	2	1
Streblospio sp.		ļ	I	I	I			I	I		ļ	I	I	1	
Arthropoda			1	1	1			1	1			1	1	1	
Crustacea Balanidae													2		
Balanus sp.							247	91	256				- 2		
Callinectes sapidus							247	91	200		1				
Corophium sp.											- 1				
Crangon sp.															
Cyathura polita	7	7		3	10	8	2	2	1	10	2	2	8	8	4
Edotea triloba	- /	1		3	10	0	2	2	1	10	2	2	0	0	4
Gammaridae															
Gammarus sp.	9			9	1	6	1	1		3	1		70	113	70
Hyale sp.	9			9	- 1	0	1	1	2	3			70	113	70
Leucon americanus	4	1				5	7	15	1	27	11		1	2	
Mysidae	-					5	'	10		21			-	~	
Palaemonetes sp.									3						
Panopeus sp.					2			1	3				4		
Insecta					~			-					-		
Chironomid pupa															
Clinotanypus sp.	3	5	1	8	24	15	17	17	5	4	6	2	12	13	2
Cricotopus bicinctus		0		Ŭ	27	10				-	0	~	12	10	2
Cryptochironomus fulvus															
Dicrotendipes neomodestus															
Polypedilum sp.			1	1	1			1					2		
Procladius sp.										1		1	1		
Rheotanytarsus exiguus												<u> </u>			
Rheotanytarsus sp.			1	1	1			1					1		
Tanypodinae			1	1	1			1					1		
Tanytarsus sp.			1	1	1			1					1		
Mollusca					1			1	1			1		1	
Amnicola sp.					<u> </u>			<u> </u>	İ —					<u> </u>	
Crassostrea virginica							3	2	7						
Geukensia demissa					<u> </u>		2	<u> </u>	5					<u> </u>	
Macoma balthica					<u> </u>			<u> </u>				1		<u> </u>	1
Macoma sp.					2	2	15	1	2	17	8	1	3	11	4
Mytilidae						_	-	1	1		-				-
Rangia cuneata				1	i			i	<u> </u>			i	1	<u> </u>	
Nematoda									<u> </u>						
Nemertea	4	2	1	1	2	3	3	1	7	4	5		4	4	3
Total Organism	-	17	3	25	44	50	303	144		74	37	8	118	160	94

Area			_	_			N	ear-Si	ite				_		
Collection Date	10)/4/20	06	10)/4/20	06	9/	/19/20	06	9/	19/20	06	10	/10/20	006
Location and depth (in)		D125 (D126 (D127 (D128 (D129 (
Sample	BBR1	BBR2	BBR3	BBR1	BBR2	BBR3	BBR1	BBR2	BBR3	BBR1	BBR2	BBR3	BBR1	BBR2	BBR3
Invertebrate Species															
Lowest Taxonomic Identification															
Annelida			r		1			r					r		-
Oligochaeta															
Aulodrilus sp.															
Haplotaxidae															
Lumbricidae															
Naididae															
Tubificidae															
Polychaeta										_		_			_
Heteromastus filiformis	3	1		_				7	1	6	4	2	4	5	8
Hobsonia florida		_		5	_	1							2		1
Neanthes sp.	1	6	1	7	2	2	_	_		_		1	1	_	_
Spiophanes sp.	6		5	8	4		3	3	3	3		2	3	6	9
Streblospio sp.															
Arthropoda		1	1	1	1	1		1	1	1	1	1	1	1	1
Crustacea										ļ					┣
Balanidae					<u> </u>					ļ					L .
Balanus sp.					1	1				ļ					1
Callinectes sapidus															
Corophium sp.															
Crangon sp.															
Cyathura polita	6	1	5	5	5	2	2	5	1	6	4	5	13	7	13
Edotea triloba	1			1	1		1				1				
Gammaridae															
Gammarus sp.	10	6	8	5	1	1	4	11		19	24	3	10	15	18
Hyale sp.										2	2		5	1	
Leucon americanus							5	12		5	12	4		1	
Mysidae															
Palaemonetes sp.															
Panopeus sp.	1	1											1		1
Insecta															
Chironomid pupa															
Clinotanypus sp.	15	5	10				6	12		12	9	5	3	11	7
Cricotopus bicinctus															
Cryptochironomus fulvus															
Dicrotendipes neomodestus															
Polypedilum sp.															
Procladius sp.															
Rheotanytarsus exiguus															
Rheotanytarsus sp.															
Tanypodinae															
Tanytarsus sp.															
Mollusca															
Amnicola sp.															
Crassostrea virginica												L			
Geukensia demissa												L			
Macoma balthica			ſ					ſ		Γ			ſ		ſ
Macoma sp.	4		3	1	1		10	20	5	110	49	34		4	1
Mytilidae															
Rangia cuneata						1							1		
Nematoda															
Nemertea	5	1	6	2	2		4	4	2	6	4	5	11	4	9
Total Organism	ns 52	21	38	34	17	8	35	74	12	169	109	61	54	54	68

Area								ear-S							
Collection Date	10	/10/20	006		/10/20		10	/10/20	006		0/5/20			0/5/20	
Location and depth (in)		D130 (D131 (D132 (D133			D134 (
Sample	BBR1	BBR2	BBR3	BBR1	BBR2	BBR3	BBR1	BBR2	BBR3	BBR1	BBR2	BBR3	BBR1	BBR2	BBR3
Invertebrate Species															
Lowest Taxonomic Identification															
Annelida		-	-	-						-	-	-		-	
Oligochaeta															
Aulodrilus sp.															
Haplotaxidae															
Lumbricidae															
Naididae															
Tubificidae															
Polychaeta															
Heteromastus filiformis	2	2	5	4	3	3	1	2	1	1		2	3	1	5
Hobsonia florida										1		2			
Neanthes sp.				1		1			3		2			1	2
Spiophanes sp.	7		4	3	1	2	2	3	2	4	1	2	l	4	3
Streblospio sp.		i	i		<u> </u>				<u> </u>	i	i	i		i	
Arthropoda		•	•	•	•			•	•	•	•	•	•	•	•
Crustacea															
Balanidae															
Balanus sp.									2			4		5	
Callinectes sapidus															
Corophium sp.															
Crangon sp.															
Cyathura polita	8	11	9	6	7	6	5	5	7	5	4	4	8	3	5
Edotea triloba	0		3	0		0	5	5		5	4	4	0	5	5
Gammaridae															
	24	45	10	4.4	4	40	4	2		20	10	07	0	14	20
Gammarus sp.	24	15	19	14	1	18	4	3		28	18	27	8	14	28
Hyale sp.	3	-	2			4	0	0						-	
Leucon americanus	1	5	3	2	2	1	3	2	2		1	1		1	2
Mysidae														3	
Palaemonetes sp.															
Panopeus sp.															
Insecta															
Chironomid pupa															
Clinotanypus sp.	3	23	12	20	10	12	5	7	12	2	8	9	8	5	10
Cricotopus bicinctus															
Cryptochironomus fulvus															
Dicrotendipes neomodestus															
Polypedilum sp.															
Procladius sp.						1									
Rheotanytarsus exiguus															
Rheotanytarsus sp.															
Tanypodinae								L					L		
Tanytarsus sp.								L					L		
Mollusca								L					L		
Amnicola sp.															
Crassostrea virginica															
Geukensia demissa					1			1	1				1		1
Macoma balthica		i	i	i	1				<u> </u>	i	i	i		i	i
Macoma sp.		1	3		1	2		5	2		1		1	8	1
Mytilidae		<u> </u>			<u> </u>			Ť	<u> </u>		<u> </u>				
Rangia cuneata		1								1				1	
Nematoda		<u> </u>	<u> </u>	<u> </u>						<u> </u>				<u> </u>	<u> </u>
Nemertea	21	10	1	12	6	10	2	14	4	10	13	9	8	19	9
Inemeriea															

Area							N	ear-Si	ite						
Collection Date	1(0/5/20	06	10	/10/20	006		/10/20		9/	21/20	06	9/	20/20	06
Location and depth (in)		D135 (D136 (D137 (D138 (D139 (
Sample	BBR1	BBR2	BBR3	BBR1	BBR2	BBR3	BBR1	BBR2	BBR3	BBR1	BBR2	BBR3	BBR1	BBR2	BBR3
Invertebrate Species															
Lowest Taxonomic Identification															
Annelida		r	r					r	r	1		1			r
Oligochaeta															
Aulodrilus sp.															
Haplotaxidae															
Lumbricidae															
Naididae															
Tubificidae															
Polychaeta Heteromastus filiformis	7	4	2	6	4	2	4	2	1	8	2	10	2	2	2
	7	4	2	6	4	2	4	2	1	8	2	13	2	2	2
Hobsonia florida	-	4	1			0		4			1	4		2	4
Neanthes sp.	2	1		11	3	2	2	1	3		1	1		2	1
Spiophanes sp.	2	2		11	3	4	2	2	3		1				
Streblospio sp.	_														
Arthropoda	-	r –	<u> </u>					r –	<u> </u>	1		1	r –	1	<u> </u>
Crustacea Balanidae															1
					2	1		2	1			18			16
Balanus sp. Callinectes sapidus					2	1		2	1			10			10
Corophium sp.															
Crangon sp.									1						
Cyathura polita	5	3	5	3	7	7	8	1	5		2	1	4	8	2
Edotea triloba	5	3	5	3	1	1	0		5		2	1	4	0	2
Gammaridae						-									
Gammarus sp.	3	15	11	24	14	44	31	21	14		1		6	4	13
Hyale sp.	3	15	- 11	24	14	1	31	21	14	1	1		0	4	13
Leucon americanus			1			2	6			11	1		1		
Mysidae			-			~	0						-		
Palaemonetes sp.															
Panopeus sp.						1									
Insecta						-									
Chironomid pupa															
Clinotanypus sp.	9	7	22		2	2	3	1	1	11	3	4	2	6	3
Cricotopus bicinctus	3		~~~		2	~	5	-	-		5	-	2	0	5
Cryptochironomus fulvus															
Dicrotendipes neomodestus															
Polypedilum sp.															
Procladius sp.															
Rheotanytarsus exiguus															
Rheotanytarsus sp.		<u> </u>	<u> </u>					<u> </u>	<u> </u>						
Tanypodinae															
Tanytarsus sp.															
Mollusca															
Amnicola sp.		1						1					1		
Crassostrea virginica		1						1				2	1		
Geukensia demissa		1	1					1	1						1
Macoma balthica		1	1					1	1						1
Macoma sp.	1	1			5	11	9	6	1	9	1	1	29	15	26
Mytilidae	<u> </u>	<u> </u>			-		Ť	Ť	<u> </u>	Ť		<u> </u>			
Rangia cuneata		1					1	1					1		
Nematoda	-	1					<u> </u>	1					1		
Nemertea	7	11	6	4	1	7		3	<u> </u>	1	1	3	6	3	1
	s 36	44	48	48	38	85	64	39	27	41	14	43	51	42	65

TABLE 16 BENTHIC MACROINVERTEBRATE SURVEY SPECIES CHARACTERISTICS

Sediment Remedial Investigation Report Former General Motors North Tarrytown Assembly Plant Sleepy Hollow, New York

Invertebrate Species	Feeding			Epifauna
Lowest Taxonomic Identification	Category ¹	Feeding Guild ²	Organism Habit ²	Classification ³
Annelida	Gutogory	1 county curu	organion nabit	Chabolineation
Oligochaeta				
Aulodrilus sp.	DD	Collector	Burrower	N
Haplotaxidae	DD	Collector	Clinger	N
Lumbricidae	DD	Collector	Burrower	N
Naididae	DD	Collector	Burrower	N
Tubificidae	DD	Collector	Clinger	N
Polychaeta		Collector	Ciirigei	IN
Heteromastus filiformis	DD	Collector	Burrower	Ν
Hobsonia florida	IN	0011001	Duitowei	N
Neanthes sp.	CO	Predator	Burrower	N
Spiophanes sp.	IN	Fledator	Builowei	N
Streblospio sp.	IN			N
	IIN			IN
rthropoda Crustacea			1	
	011	Filterer	Olinaar	V
Balanidae Balanua an	SU	Filterer	Clinger	Y
Balanus sp.	SU	Filterer	Clinger	Y Y
Callinectes sapidus	CO	Collector	Swimmer	
Corophium sp.	IN			Y
Crangon sp.	CO	Collector	Sprawler	Y
Cyathura polita	CO			N
Edotea triloba	CO			Y
Gammaridae	CO	Collector	Swimmer	Y
Gammarus sp.	CO	Shredder	Swimmer	Y
Hyale sp.	CO	Gatherer	Swimmer	Y
Leucon americanus	IN		Burrower	N
Mysidae	CO	Predator	Swimmer	Y
Palaemonetes sp.	CO	Collector	Sprawler	Y
Panopeus sp.	CO	Collector	Sprawler	Y
Insecta				
Chironomid pupa	CO	Gatherer	Burrower	N
Clinotanypus sp.	CO	Predator	Burrower	N
Cricotopus bicinctus	CO	Shredder	Clinger/Burrower	N
Cryptochironomus fulvus	CO	Predator	Sprawler/Burrower	Ν
Dicrotendipes neomodestus	CO	Collector	Burrower	N
Polypedilum sp.	CO	Shredder	Climber/Clinger	Ν
Procladius sp.	CO	Predator	Sprawler	Ν
Rheotanytarsus exiguus	CO	Filterer	Clinger	N
Rheotanytarsus sp.	CO	Filterer	Clinger	Ν
Tanypodinae	CO	Predator	Swimmer/Crawler	Ν
Tanytarsus sp.	CO	Filterer	Climber/Clinger	Ν
Mollusca	•	•		
Amnicola sp.	CO	Scraper	Climber	Y
Crassostrea virginica	SU	Filterer	Clinger	Y
Geukensia demissa	IN	Filterer	Clinger	Y
Macoma balthica	IN	Siphon	Sprawler	Ν
Macoma sp.	IN	Siphon	Sprawler	Ν
Mytilidae	SU	Filterer	Clinger	Y
Rangia cuneata	SU	Filterer	Sprawler	N
Vematoda	CO	Parasite, Piercer, Shredder	Burrower	Y
Vemertea	CO	Predator	Burrower	Ý

Notes:

1. Feeding category according to Chesapeake B-IBI classifications (Weisberg et al. 1997); CO = carnivore/omnivore,

DD = deep deposit feeder, IN = interface feeder, SU = suspension feeder

2. Feeding Guild and Organism Habit designations are from various references including: Aquatic Insects of North America (1996),

Ecology and Classification of North American Freshwater Invertebrates (1991), and Feeding of Freshwater Invertebrates (2003).

3. Species classified as epifauna according to Chesapeake B-IBI designations and reference material.

TABLE 17 BENTHIC MACROINVERTEBRATE SURVEY SUMMARY METRICS

Sediment Remedial Investigation Report Former General Motors North Tarrytown Assembly Plant Sleepy Hollow, New York

Location	Total Number of Organisms	Margalef Species Richness	Abundance of Epifauna (%)	Number of Infauna Species	Number of Polychaetes Species	Abundance of Suspension Feeders (# Org/m^2)	Shannon-Wiener Index (Diversity)
Background							
SED 100	848	2.22	13	14	3	89	1.72
SED 101	1863	1.06	22	7	2	6	1.12
SED 102	958	1.31	30	7	2	0	0.79
SED 103	1438	1.10	33	6	2	13	0.71
SED 104	90	1.33	29	5	2	0	0.98
SED 105	209	1.50	44	5	2	32	1.19
SED 106	520	1.44	40	6	2	51	1.39
SED 107	318	2.08	38	8	3	19	1.24
SED 108	50	2.56	36	7	2	25	1.83
SED 109	459	1.96	38	8	4	19	1.23
SED 110	99	1.52	25	6	2	13	1.38
Near-Site			•			•	•
SED 111	115	1.69	11	8	4	0	1.95
SED 112	228	1.84	27	8	3	6	1.77
SED 113	176	2.32	31	9	3	0	1.78
SED 114	378	1.52	40	6	2	6	1.30
SED 115	196	1.52	33	6	2	0	1.07
SED 116	307	1.75	36	7	2	0	1.06
SED 117	56	2.24	30	7	2	0	2.09
SED 118	58	2.46	36	7	3	89	1.95
SED 119	53	1.76	25	6	1	0	1.68
SED 120	55	1.75	25	6	3	0	1.93
SED 121	119	2.09	27	8	3	6	1.87
SED 122	755	2.72	53	9	4	3792	1.03
SED 123	119	2.30	25	9	3	0	1.96
SED 124	372	2.53	25	12	4	19	1.34
SED 125	111	1.91	40	6	3	0	1.99
SED 126	59	2.21	40	6	3	19	2.04
SED 127	121	1.67	33	6	2	0	1.97
SED 128	339	1.72	36	7	3	0	1.50
SED 129	176	2.51	36	9	4	13	2.10
SED 130	195	1.71	30	7	2	6	1.90
SED 131	150	2.00	18	9	3	0	1.89
SED 132	98	1.96	30	7	3	13	2.04
SED 133	160	2.17	25	9	4	32	1.69
SED 134	165	2.15	33	8	3	38	2.00
SED 135	128	1.85	20	8	4	0	1.81
SED 136	171	2.33	46	7	3	19	1.77
SED 137	130	2.26	33	8	3	25	1.71
SED 138	98	2.62	38	8	4	115	2.07
SED 139	158	2.17	42	7	3	108	1.80

Note:

% = percent

TABLE 18 BENTHIC MACROINVERTEBRATE SURVEY WATER QUALITY DATA

Sample	Collection	Total Water	Measurement	DO	Water	Salinity	ORP		Conductivity	Turbidity	Water
Location and depth (in) ¹	Date (Time)	Depth (ft)	Interval ²	(mg/L)	Temperature (C)	(%)	(mV)	pН	(mS/cm)	(NTU)	Velocity (ft/s)
Background				、 σ, γ				ľ		\ - <i>\</i>	
SED-100 (0-6)	9/20/2006	6.5	Surface	8.84	23.1	0.5	256	7.81	8.68	20.3	0.01
	(0905)		Bottom								
SED-101 (0-6)	9/20/2006	9.9	Surface	9.69	22.9	0.5	235	7.91	8.79	15.1	-0.08
	(1000)		Bottom	9.54	23	0.5	223	7.88	8.95	14.3	-0.04
SED-102 (0-6)	9/20/2006	12	Surface	9.41	23.3	0.4	209	7.87	8.12	13.8	-0.08
	(1100)		Bottom	18.9	23.1	0.5	202	7.81	10.2	13.6	-0.05
SED-103 (0-6)	9/20/2006	12.5	Surface	9.82	23.2	0.5	237	7.93	8.5	15.1	-0.34
	(1200)		Bottom	9.48	23	0.6	236	7.87	11.1	15	-0.23
SED-104 (0-6)	9/21/2006	15.2	Surface	9.97	22.1	0.5	189	8.06	9.5	21.7	0.6
	(1315)	10.7	Bottom	8.88	22.2	0.6	186	8.01	10.5	15.1	0.52
SED-105 (0-6)	9/21/2006 (1415)	10.7	Surface Bottom	10.23 9.94	22.3 22.2	0.5 0.5	196 185	7.96 7.89	9.6 9.7	17.7 18.7	1.16 1.08
SED-106 (0-6)	9/20/2006	12.3	Surface	10.28	23.2	0.5	226	7.96	8.7	15.7	
SED-100 (0-0)	(1300)	12.5	Bottom	9.77	23.2	0.6	222	7.9	10.1	15.4	
SED-107 (0-6)	9/13/2006	16.7	Surface	10.58	22.3	0.8	237	8.02	13.3	10.1	-0.5
(,	(1530)		Bottom	10.43	22.3	0.8	215	8.01	13.4	14.2	-0.45
SED-108 (0-6)	9/18/2006	13.8	Surface	10.17	24.2	0.5	266	7.72	8.22	11.5	0.59
. ,	(1430)		Bottom	9.85	23.8	0.5	254	7.62	8.42	10.3	0.33
SED-109 (0-6)	9/13/2006	13.3	Surface	10.61	22.6	0.8	281	7.97	13.2	9.9	-0.88
	(1400)		Bottom	10.26	22.5	0.7	274	8.01	12.9	11.2	-0.4
SED-110 (0-6)	9/18/2006	11.9	Surface	9.93	24.2	0.5	273	7.98	8.6	10.8	0.04
	(1530)		Bottom	9.83	24.1	0.5	260	7.99	8.6	12.5	0.02
Near-Site											
SED-111 (0-6)	9/14/2006	17.5	Surface	10.07	22.1	0.8	176	7.99	13.2	9.8	-0.7
	(0820)		Bottom	9.8	22.1	0.8	163	8.03	13.4	10.2	-0.86
SED-112 (0-6)	9/13/2006	13.5	Surface	10.05	22.3	0.7	287	7.99	12.9	9.2	-0.12
	(1045)		Bottom	10.06	21.8	0.8	281	7.97	13.2	9.9	-0.35
SED-113 (0-6)	9/13/2006	4.6	Surface	10.02	21.6	0.7	290	7.97	13	10.2	-0.11
	(1000)	5.0	Bottom	10.03	21.6	0.7	287	7.97	13	9.8	-0.16
SED-114 (0-6)	9/13/2006 (0915)	5.9	Surface Bottom	9.63 9.54	21.7 21.7	0.8 0.8	245 237	7.92 7.91	13.6 13.7	12.3 11.1	-0.11 -0.2
SED-115 (0-6)	9/12/2006	9.3	Surface	9.54	23.1	0.8	237	7.84	14.5	8	0.08
SED-113 (0-0)	(1520)	5.5	Bottom	8.84	22.7	0.9	190	7.79	15.6	12	0.08
SED-116 (0-6)	9/12/2006	9.8	Surface	10	23	0.8	241	7.84	14.3	10.3	0.18
()	(1330)		Bottom	10	22.9	0.8	227	7.64	14.2	10.2	0.46
SED-117 (0-6)	9/18/2006	8	Surface	11.09	24.5	0.5	280	7.86	9.13	74.3	0.34
	(1630)		Bottom	10.64	24.5	0.6	271	7.7	9.79	114	0.31
SED-118 (0-6)	9/19/2006	13.9	Surface	9.76	23.3	0.5	283	7.92	9.8	13.1	-0.67
	(0830)		Bottom	9.71	23.3	0.6	271	7.87	10.2	15.3	-0.37
SED-119 (0-6)	9/21/2006	21.4	Surface	9.6	21.5	0.6	101	7.91	11.2	18.7	-0.42
	(1130)		Bottom	9.64	21.3	0.6	92	7.85	11.2	15.8	-0.5
SED-120 (0-6)	10/10/2006		Surface	9.53	19.9	0.5	6	8.17	9.3	28.7	1.12
	(1530)	45.0	Bottom	9.34	20.1	0.6	5	8.21	10.3	20.5	0.26
SED-121 (0-6)	9/19/2006 (0910)	15.8	Surface Bottom	9.87 9.77	23.3 23.3	0.6 0.6	278 271	7.97 7.92	10.3 10.5	14.5 13.2	-0.44 -0.45
SED-122 (0-6)	10/10/2006		Surface	9.77	23.3	0.6	255	8.16	9.4	10.6	-0.45
SED-122 (0-0)	(1445)		Bottom	9.41	19.4	0.6	252	8.14	11.2	19.9	
SED-123 (0-6)	9/19/2006	17.4	Surface	9.93	23.5	0.6	283	7.99	10.4	14.5	1.05
	(1405)		Bottom	7.64	22.5	1	279	7.82	16.8	15.6	0.3
SED-124 (0-6)	9/19/2006	10.5	Surface	10.01	23.2	0.6	287	7.98	10.5	12.9	-0.02
/	(1030)		Bottom	9.69	23.2	0.6	282	7.97	10.7	13.4	-0.09
SED-125 (0-6)	10/4/2006	11.1	Surface	9.87	21.5	0.5	2.53	7.14	9	13.8	-0.42
	(1500)		Bottom	9.46	20.9	0.6	2.55	6.95	10.7	30.7	-0.39
SED-126 (0-6)	10/4/2006	4	Surface	9.22	21.6	0.6	1.51	6.96	11.1	18.7	0.05
	(1330)		Bottom	9.78	21.8	0.6	1.6	6.8	10.7	26	0
SED-127 (0-6)	9/19/2006	11.8	Surface	10.06	23.6	0.8	286	8	10.6	17.8	0.42
	(1300)		Bottom	8.42	22.9	0.9	279	7.92	14.7	18.9	0.37
SED-128 (0-6)	9/19/2006	7.8	Surface	10.95	23.9	0.6	274	8.09	10.5	12.4	0.52
	(1145)		Bottom	10.67	23.7	0.6	263	8.08	10.8	13.5	0.48

TABLE 18 BENTHIC MACROINVERTEBRATE SURVEY WATER QUALITY DATA

Sediment Remedial Investigation Report Former General Motors North Tarrytown Assembly Plant Sleepy Hollow, New York

Sample	Collection	Total Water	Measurement	DO	Water	Salinity	ORP		Conductivity	Turbidity	Water
Location and depth (in) ¹	Date (Time)	Depth (ft)	Interval ²	(mg/L)	Temperature (C)	(%)	(mV)	pН	(mS/cm)	(NTU)	Velocity (ft/s)
Near-Site											
SED-129 (0-6)	10/10/2006	11	Surface	9.77	19.4	0.6	269	8.2	8.64	30.1	
	(1030)		Bottom	9.64	19.2	0.5	262	8.32	9.41	28.9	
SED-130 (0-6)	10/10/2006	9	Surface	9.66	19.3	0.6	245	8.11	9.64	22.3	
	(1045)		Bottom	9.84	19.1	0.5	233	8.14	9.7	25.7	
SED-131 (0-6)	10/10/2006	10	Surface	9.78	19.6	0.6	178	8.09	9.05	22.1	
	(1245)		Bottom	9.83	19.6	0.5	173	8.08	8.98	20.8	
SED-132 (0-6)	10/10/2006	11.3	Surface	9.28	9.6	0.6	203	8.11	9.23	35.4	
	(1300)		Bottom	9.56	11.5	0.5	198	8.11	9.27	36.9	
SED-133 (0-6)	10/5/2006	6.8	Surface	11	20.7	0.5	3.14	7.85	9.14	17.9	
	(1530)		Bottom	10.93	20.8	0.5	3.15	7.5	9.17	19.8	
SED-134 (0-6)	10/5/2006	5	Surface	10.96	20.7	0.5	2.9	8.09	9.12	17.3	
	(1600)		Bottom	10.89	20.7	0.5	2.87	8.01	9.16	16.1	
SED-135 (0-6)	10/5/2006	5.9	Surface	10.93	20.7	0.5	213	8.21	9.06	18.3	
	(1700)		Bottom	10.95	20.7	0.5	200	8.13	9.05	18.3	
SED-136 (0-6)	10/10/2006	11.8	Surface	9.91	19.7	0.6	209	8.13	9.9	32	
	(1600)		Bottom	10.29	19.6	0.6	204	8.16	11.5	39.8	
SED-137 (0-6)	10/10/2006	13	Surface	9.07	19.4	0.6	224	8.12	10.6	28.1	
	(1315)		Bottom	9.36	19.3	0.6	214	8.17	10.7	38.3	
SED-138 (0-6)	9/21/2006	21.8	Surface	9.13	22.1	0.7	232	7.88	12.7	13.7	-0.6
	(1030)		Bottom	8.73	22.2	0.8	229	7.82	13.5	12.3	-0.83
SED-139 (0-6)	9/20/2006	7.8	Surface	10.43	22.9	0.6	236	8	11	222	0.97
	(1415)		Bottom	10.19	22.9	0.6	234	7.97	11.3	230	0.86

Notes: 1. Water quality monitoring was performed using a Horiba water quality instrument.

2. Surface measurements were taken within 1 meter of the water surface and bottom measurements taken within 1 meter of the sediment.

- - = Not available

% = percentage C = degrees Celsius

DO = dissolved oxygen

ft = feet

ft/s = feet per second

mg/L = milligrams per liter

mS/cm = milliSiemens per centimeter mV = millivolts

NTU = Nephelometric Turbidity Units

ORP = Oxidation Reduction Potential

TABLE 19 BIOLOGICAL TISSUE DATA NEAR-SITE AND BACKGROUND LOCATIONS

Sample ID: Sample Depth (ft): Date Collected:		SED100 0 - 0.5 9/20/2006	SED101 0 - 0.5 9/20/2006	SED103 0 - 0.5 9/20/2006	SED105 0 - 0.5 9/21/2006	SED106 0 - 0.5 9/20/2006	SED108 0 - 0.5 9/18/2006	SED110 0 - 0.5 9/18/2006	SED120 0 - 0.5 10/10/2006	SED121 0 - 0.5 9/19/2006	SED124 0 - 0.5 9/19/2006
Inorganics											
Chromium	mg/kg	0.97 U	0.99	1 U	0.97 U	0.95 U	0.95 U	0.97 U	0.98 U	0.95 U	0.99 U
Copper	mg/kg	2.1	3.1	3.2	4.3	1.9	4.1	4.6	2 U	3.1	2
Lead	mg/kg	4.9 U	4.8 U	5 U	4.9 U	4.8 U	4.8 U	4.9 U	4.9 U	4.8 U	5 U
Mercury	mg/kg	0.03 U	0.03 U	0.03 U							
Zinc	mg/kg	11	12.8	10.9	15.1	9.9	13.8	13	8.9	9.6	8

TABLE 19 BIOLOGICAL TISSUE DATA NEAR-SITE AND BACKGROUND LOCATIONS

Sediment Remedial Investigation Report Former General Motors North Tarrytown Assembly Plant Sleepy Hollow, New York

Sample ID: Sample Depth (ft): Date Collected:		SED126 0 - 0.5 10/4/2006	SED129 0 - 0.5 10/10/2006	SED130 0 - 0.5 10/10/2006	SED133 0 - 0.5 10/5/2006	SED134 0 - 0.5 10/5/2006	SED134 0 - 0.5 10/10/2006	SED137 0 - 0.5 10/10/2006
Inorganics								
Chromium	mg/kg	1 U	1.2	1 U	1.1	1 U	0.95 U	1 U
Copper	mg/kg	4.4	2.2	2 U	3	2 U	2	2 U
Lead	mg/kg	5 U	4.8 U	5 U	5 U	5 U	4.8 U	5 U
Mercury	mg/kg	0.03 U	0.03 U	0.03 U	0.03 U	0.03 U	0.03 U	0.03 U
Zinc	mg/kg	15.3	12.4	11.2	11.2	12.3	12.6	9.4

Notes:

Data Qualifiers:

J = Indicates an estimated value

U = Indicates that the analyte was analyzed for but not detected

TABLE 20 WEIGHT OF EVIDENCE SUMMARY - 2006 DATA STUDY

Sediment Remedial Investigation Report Former General Motors North Tarrytown Assembly Plant Sleepy Hollow, New York

			_			_	_		_		cer	y 11		, w, i	1010	York			_	_	_	
		Sc	ree	ning	g Le	vel	Evi	den	се									ific Eviden	се			
			Se	dime	ent C	Cher	nist	ry 1				Pore	e Wa	nter ²	2		ibrium Imark ³		т	oxicity	y ⁵	
2000 Sampling	F	Tyce	eds	BSI			vco	ode	ERM	M	E	xcee	eds l	NY S	ŝВ		EM)/foc				_	Benthic
2006 Sampling Stations			eus	55	-	_		eus				С	riter	ia				Biotissue			tion	Community
	Chromium	Copper	Lead	Mercury	Zinc	Chromium	Copper	Lead	Mercury	Zinc	Chromium	Copper	Lead	Mercury	Zinc	>130< 3,000	>3,000	Levels ⁴	Survival	Growth	Reproduction	Indices ⁶
BACKGROUND	REF	ERE	INC	E AF	REA																	
SED-100	-	-	-	-	-	-	-	-	-	-	NS	NS	NS	NS	NS	-	-	-	-	-	-	-
SED-101	-	-	-	-	-	-	•	-	-	-	-	+	-	-	-	-	-	-	-	-	-	-
SED-102	-	-	-	-	-	-	•	-	-	-	-	+	-	-	-	-	-	NS	-	-	-	-
SED-103	-	-	-	-	-	-	•	-	-	-	-	+	-	-	-	-	-	-	-	-	-	-
SED-104	-	-	-	-	-	-	•	-	-	-	-	+	-	-	-	-	-	NS	-	-	-	-
SED-105	-	-	-	-	-	-	-	-	+	-	-	+	-	-	-	-	-	-	-	-	-	-
SED-106	-	-	-	-	-	-	-	-	-	-	-	+	-	-	-	-	-	-	-	-	-	-
SED-107	-	-	-	-	-	-	-	-	-	-	-	+	-	-	-	-	-	NS	+	-	-	-
SED-108	-	-	-	-	-	-	•	-	-	-	-	+	-	-	-	-	-	-	-	-	-	-
SED-109	-	-	-	-	-	-	•	-	+	-	-	+	-	-	-	-	-	NS	+	-	-	-
SED-110	-	-	-	-	-	-	-	-	-	-	NS	NS	NS	NS	NS	-	-	-	-	-	-	-
NEAR-SITE ARE	A N	ORI	но	FO	UTF	ALL	-1															
SED-111	-	-	-	-	-	-	-	-	-	-	-	+	-	-	-	-	-	NS	-	-	-	-
SED-112	-	-	-	-	-	-	-	-	+	-	-	+	-	-	-	-	-	NS	-	-	-	-
SED-113	-	-	-	-	-	-	-	-	-	-	-	+	-	-	-	-	-	NS	-	-	-	-
SED-114	-	-	-	-	-	-	•	-	-	-	-	+	-	-	-	-	-	NS	-	-	-	-
SED-115	-	-	-	-	-	-	•	-	-	-	-	+	-	-	-	-	-	NS	-	-	-	-
SED-116	-	-	-	-	-	-	•	-	+	-	-	+	-	-	-	-	-	NS	-	-	-	-
SED-117	-	-	+	-	-	-	•	-	-	-	-	+	-	-	-	-	-	NS	-	-	-	-
SED-118	-	-	-	-	-	-	-	-	-	-	NS	NS	NS	NS	NS	-	-	NS	-	-	-	-
SED-119	-	-	-	-	-	-	•	-	-	-	-	+	-	-	-	-	-	NS	-	-	-	-
SED-120	-	-	-	-	-	-	-	-	+	-	-	+	-	-	-	-	-	-	-	-	-	-
SED-121	-	-	+	-	-	-	•	-	+	-	-	+	-	-	-	-	-	-	-	-	-	-
SED-122	-	-	-	-	-	-	•	-	-	-	-	+	-	-	-	-	-	NS	-	-	-	-
SED-123	-	+	+	+	-	-	-	-	+	-	-	+	-	-	-	-	-	NS	-	-	-	-
SED-124	-	-	-	-	-	-	-	-	-	-	-	+	-	-	-	-	-	-	-	-	-	-
SED-125	-	+	+	-	-	-	-	-	+	-	-	+	-	-	-	-	-	NS	-	-	-	-
SED-127	-	-	-	-	-	-	-	-	-	-	-	+	-	-	-	-	-	NS	-	-	-	-
OUTFALL -1						•				•	•			•			•		-	•		
SED-126	+	+	+	-	+	-	-	+	-	+	NS	NS	NS	NS	NS	+	-	-	-	-	-	-
NEAR-SITE ARE	AS	ουτ	но	FO	UTF	ALL	-1															
SED-128	-	-	-	-	-	-	-	-	-	-	-	+	-	-	-	-	-	NS	-	-	-	-
SED-129	-	-	-	-	-	-	-	-	+	-	-	+	-	-	-	-	-	-	-	-	-	-
SED-130	-	+	+	-	-	-	-	-	+	-	-	+	-	-	-	-	-	-	-	-	-	-
SED-131	-	-	+	+	-	-	-	-	+	-	-	+	-	-	-	-	-	NS	-	-	-	-
SED-132	-	+	+	+	-	-	-	-	+	-	-	+	-	-	-	-	-	NS	+	-	-	-
SED-133	-	-	+	-	-	-	-	-	+	-	-	+	-	-	-	-	-	-	+	-	-	-
SED-134	-	-	-	+	-	-	-	-	+	-	-	+	+	-	-	-	-	-	-	-	-	-
SED-135	-	-	-	-	-	-	-	-	+	-	-	+	-	-	-	-	-	NS	-	-	-	-
SED-136	-	+	+	-	-	-	-	-	+	-	-	+	-	-	-	-	-	NS	+	-	-	-
SED-137	-	-	-	-	-	-	-	-	+	-	-	+	-	-	-	-	-	-	NS	NS	NS	-
SED-138	-	-	-	-	-	-	-	-	+	-	-	+	-	-	-	-	-	NS	-	-	-	-
SED-139	-	-	-	-	-	-	-	-	-	-	-	+	-	-	-	-	-	NS	-	-	-	-
012 100						L				l				l				0				

Notes: 1. COPC concentration in bulk sediment exceeds (+) Background Screening Level (BSL) or Sediment ERM? I. COPC concentration in bulk sediment exceeds (+) Background Screening Level (BSL) or Sediment ERM?

2. COPC concentration in sediment pore water exceeds (+) NY Class SB Water Quality Criteria?

3. (SEM-AVS)/Foc exceeds equilibrium benchmark?

- = (SEM-AVS)/foc < 130 umoles/goc (no toxicity predicted).
- + = (SEM-AVS)foc > 130 umoles/goc , < 3,000 umoles/goc (toxicity uncertain).

++ = (SEM-AVS)foc > 3,000 umoles/goc (potential toxicity).

- 4. COPC concentration in bivalve tissue comparable to background?
 - = COPC concentration similar to background.
 - + = COPC concentration greater than background.
- 5. Endpoint measurement from L. plumulosus 28-day toxicity test below tolerance limit?
 - = Endpoint measurement below background tolerance limit.
 - + = Endpoint measurement above background tolerance limit.
- 6. Benthic community data indicate impairment relative to background?
 - = Community data similar to background.
 - + = Community data impaired relative to background.
- NS = Not Sampled

TABLE 21 SUBSURFACE SEDIMENT DATA BACKGROUND LOCATIONS

Sample ID: Sample Depth (ft):		SED102 0 - 1	SED102 1 - 2	SED102 2 - 3	SED102 3 - 4	SED102 4 - 5	SED102 5 - 6	SED102 6 - 7	SED102 7 - 8	SED102 8 - 8.5
Date Collected:	Units	10/4/2006	10/4/2006	10/4/2006	10/4/2006	10/4/2006	10/4/2006	10/4/2006	10/4/2006	10/4/2006
Inorganics										
Chromium (Total)	mg/kg	28.1	26.7	29	28.3	24.4	28.8	26.8	27.6	27.2
Copper	mg/kg	16.4	15.6	14.4	15.1	13.5	16.3	15.8	15.6	14.9
Lead	mg/kg	13.6	13.1	12.6	12.8	10.9	13.1	13.2	13.3	12.7
Mercury	mg/kg	0.06 U	0.06 U	0.06 U	0.05 U	0.05 U	0.05 U	0.06 U	0.05 U	0.06 U
Zinc	mg/kg	78.8	73.5	76.2	74.5	66.9	75.8	77.3	77.4	74.7
Total Organic Carbon (TOC	;)		•	-	-	•	•	•	•	-
TOC	mg/kg	13,800	13,600	11,300	17,400	11,100	8,660	11,500	11,000	10,300

TABLE 21 SUBSURFACE SEDIMENT DATA BACKGROUND LOCATIONS

Sample ID:		SED103	SED103-DUP	SED103						
Sample Depth (ft):		0 - 1	0 - 1	1 - 2	2 - 3	3 - 4	4 - 5	5 - 6	6 - 7	7 - 8
Date Collected:	Units	10/4/2006	10/4/2006	10/4/2006	10/4/2006	10/4/2006	10/4/2006	10/4/2006	10/4/2006	10/4/2006
Inorganics										
Chromium (Total)	mg/kg	27.3	31	24.9	24.4	23.6	24.7	26	23.7	24.3
Copper	mg/kg	17.5	22.9	12.9	11.8	11.9	13.1	14.7	12.2	13.9
Lead	mg/kg	16	22.6	11.5	10.9	10.5	11.4	11.1	9.8	11.8
Mercury	mg/kg	0.07	0.16	0.05 U	0.04 U	0.05 U				
Zinc	mg/kg	79.7	89.7	68.6	63.7	64.1	66.9	68.4	65.8	70.1
Total Organic Carbon (TOC	;)									
TOC	mg/kg	12,300	10,700	11,600	12,500	8,890	9,450	11,500	7,840	9,500

TABLE 21 SUBSURFACE SEDIMENT DATA BACKGROUND LOCATIONS

Sediment Remedial Investigation Report Former General Motors North Tarrytown Assembly Plant Sleepy Hollow, New York

Sample ID: Sample Depth (ft):		SED104 0 - 1	SED104 1 - 2	SED104 2 - 3	SED104 3 - 4	SED104 4 - 5	SED104 5 - 6	SED104 6 - 7	SED104 7 - 7.3
Date Collected:	Units	10/4/2006	10/4/2006	10/4/2006	10/4/2006	10/4/2006	10/4/2006	10/4/2006	10/4/2006
Inorganics									
Chromium (Total)	mg/kg	31.5	25	29.5	26.2	26	27.3	31.2	31.9
Copper	mg/kg	58	18.4	19.4	16.5	16.1	16.8	19.1	18.7
Lead	mg/kg	70.1	23.1	17.1	14.7	13.6	14.4	16.8	16.4
Mercury	mg/kg	0.37	0.13	0.05 U	0.05	0.05 U	0.05 U	0.05 U	0.05 U
Zinc	mg/kg	171	78.4	85.9	77.6	77.7	77	87	85.3
Total Organic Carbon (TOC	;)								
TOC	mg/kg	16,200	12,900	14,900	11,700	15,100	15,500	14,300	15,200

Notes:

mg/kg = milligrams per kilogram (concentration in parts per million)

Data Qualifiers:

J = Indicates an estimated value

U = Indicates that the analyte was analyzed for but not detected

Sample ID:		SED119	SED119-DUP	SED119	SED119-DUP	SED119	SED119	SED119	SED119	SED119
Sample Depth (ft):		0 - 1	0 - 1	1 - 2	1 - 2	2 - 3	3 - 4	4 - 5	5 - 6	6 - 7
Date Collected:	Units	10/4/2006	10/4/2006	10/4/2006	10/4/2006	10/4/2006	10/4/2006	10/4/2006	10/4/2006	10/4/2006
Inorganics										
Chromium (Total)	mg/kg	15.8	13.9	11.9	12.7	11.3	13.2	13.4	12.5	12.8
Copper	mg/kg	14.1	12.3	8.9	9.4	8	9.1	10.3	9	8.9
Lead	mg/kg	11.2	9.6	5.9 U	6 U	5.8 U	6 U	6.2 U	6.1 U	5.7 U
Mercury	mg/kg	0.21	0.23	0.08	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U
Zinc	mg/kg	48.8	45.3	39.6	44.1	38.2	44.9	45.4	41.7	42.6
Total Organic Carbon (TOC	;)		•		•		•	•	•	•
TOC	mg/kg	1,120	2,280	970	887	1,000	1,120	4,630	2,870	1,460

Sample ID:		SED119	SED123	SED123	SED123	SED123-DUP	SED123	SED123-DUP	SED123	SED123
Sample Depth (ft):		7 - 8.2	0 - 1	1 - 2	2 - 3	2 - 3	3 - 4	3 - 4	4 - 5	5 - 6
Date Collected:	Units	10/4/2006	10/4/2006	10/4/2006	10/4/2006	10/4/2006	10/4/2006	10/4/2006	10/4/2006	10/4/2006
Inorganics										
Chromium (Total)	mg/kg	11.4	71.5	113	109	129	100	101	103	120
Copper	mg/kg	9.5	89.7	172	173	254	265	199	127	150
Lead	mg/kg	5.8 U	88.1	138	127	160	144	139	138	163
Mercury	mg/kg	0.04 U	1.7	1.3	1.4	1.5	1.6	1.3	1.1	1.1
Zinc	mg/kg	41.5	208	295	288	300	245	243	260	307
Total Organic Carbon (TOC	;)			-						
TOC	mg/kg	475	24,500	33,400	28,400	31,500	35,600	33,200	35,400	31,200

Sample ID:		SED123	SED123 7 - 8	SED123	SED123 9 - 10	SED126	SED127 0 - 1	SED127 1 - 2	SED127	SED127 3 - 4
Sample Depth (ft): Date Collected:		6 - 7 10/4/2006	10/4/2006	8 - 9 10/4/2006	10/4/2006	0 - 1 10/11/2006	10/11/2006	10/11/2006	2 - 3 10/11/2006	3 - 4 10/11/2006
Inorganics	onita	10/4/2000	10/4/2000	10/4/2000	10/4/2000	10/11/2000	10/11/2000	10/11/2000	10/11/2000	10/11/2000
Chromium (Total)	mg/kg	58.5	28.9	12.7	17.6	257	144	94.7	94.1	130
Copper	mg/kg	69.6	33.1	10.8	11.3	124 J	185	129	104	200
Lead	mg/kg	63.1	31.1	6.4	7.9	1,530 J	215	112	120	159
Mercury	mg/kg	0.58	0.5	0.1	0.04 U	0.72	5.1	1.7	2.5	7.7
Zinc	mg/kg	148	79.9	42.9	49.9	3,030 J	333	246	232	294
Total Organic Carbon (TOC	;)		•	•	•	•	•	•	•	•
TOC	mg/kg	15,500	12,500	1,860	3,030	32,500	25,600	26,600	21,700	22,300

Sample ID:		SED127	SED127	SED127	SED127	SED127	SED127	SED128	SED128-DUP	SED128
Sample Depth (ft):		4 - 5	5 - 6	6 - 7	7 - 8	8 - 9	9 - 9.5	0 - 1	0 - 1	1 - 2
Date Collected:	Units	10/11/2006	10/11/2006	10/11/2006	10/11/2006	10/11/2006	10/11/2006	10/11/2006	10/11/2006	10/11/2006
Inorganics										
Chromium (Total)	mg/kg	96.9	121	122	123	126	101	60.2	62.2	66.5
Copper	mg/kg	157	145	167	184	191	212	74.3	78	83.1
Lead	mg/kg	131	145	153	153	157	139	72.5	78.2	84.7
Mercury	mg/kg	8.8	5.8	6.3	3.1	1.4	1.3	0.75	0.75	0.77
Zinc	mg/kg	259	310	315	295	305	284	183	195	201
Total Organic Carbon (TOC	;)									
TOC	mg/kg	24,400	27,900	30,900	37,800	32,800	26,000	19,100	29,400	22,500

Sample ID: Sample Depth (ft): Date Collected:	Units	SED128 2 - 3 10/11/2006	SED128 3 - 4 10/11/2006	SED128 4 - 5 10/11/2006	SED128 5 - 6 10/11/2006	SED138 0 - 1 10/11/2006	SED138 1 - 2 10/11/2006	SED138 2 - 3 10/11/2006	SED138-DUP 2 - 3 10/11/2006	SED138 3 - 4 10/11/2006
Inorganics			•	•						
Chromium (Total)	mg/kg	92.7	150	27.8	19.8	47.8	35.6	37	37.6	37.6
Copper	mg/kg	111	168	21.5	13.5	94.4 J	78.6 J	50.4 J	57 J	45.5 J
Lead	mg/kg	104	258	17.5	9.2	86	79.5	89.6	97	97
Mercury	mg/kg	1	7.9	0.11	0.04 U	1.2 J	1.1 J	1.3 J	1.2 J	1.3 J
Zinc	mg/kg	243	430	71.1	51.4	178	174	150	159	153
Total Organic Carbon (TOC	;)		•	•	•	•	•	•	•	
TOC	mg/kg	26,900	46,100	6,400	5,440	21,600	24,800	56,900	23,600	13,900

Sediment Remedial Investigation Report Former General Motors North Tarrytown Assembly Plant Sleepy Hollow, New York

Sample ID: Sample Depth (ft):		SED138 4 - 5	SED138 5 - 6	SED138 6 - 7	SED138 7 - 8	SED138 8 - 9	SED138 9 - 9.5
Date Collected:	Units	10/11/2006	10/11/2006	10/11/2006	10/11/2006	10/11/2006	10/11/2006
Inorganics							
Chromium (Total)	mg/kg	33.7	42.6	43.5	40.9	36.7	37.2
Copper	mg/kg	38.9 J	49.4 J	49 J	37.8 J	36.6 J	37.4 J
Lead	mg/kg	86.1	115	121	95.2	86.7	82
Mercury	mg/kg	0.93 J	1.7 J	1.9 J	1.4 J	0.91 J	0.93 J
Zinc	mg/kg	140	161	155	133	127	127
Total Organic Carbon (TO	C)		•	•	•	•	•
TOC	mg/kg	18,900	17,300	17,400	30,000	12,900	11,900

Notes:

mg/kg = milligrams per kilogram (concentration in parts per million)

Data Qualifiers:

J = Indicates an estimated value

U = Indicates that the analyte was analyzed for but not detected

Sample ID:		SED140	SED141	SED141	SED141	SED141	SED142	SED142	SED142-DUP	SED142
Sample Depth (ft):		0 - 1.5	0 - 2	2 - 4	4 - 6	6 - 8	0 - 2	2 - 4	2 - 4	4 - 6
Date Collected:	Units	10/5/2006	10/5/2006	10/5/2006	10/5/2006	10/5/2006	10/5/2006	10/5/2006	10/5/2006	10/5/2006
Inorganics										
Chromium (Total)	mg/kg	437 J	147 J	298 J	145 J	27.4 J	59.7	63.6	74	91.4
Copper	mg/kg	72	73.6	77.3	40.4	19.9	64.4	66.2	74.5	41.6
Lead	mg/kg	8,420	588	738	178	20.6	81.3	79.5	97.7	233
Mercury	mg/kg	0.41	0.75	0.74	0.28	0.09	0.59	0.64	0.78	0.39
Zinc	mg/kg	3,080 J	806 J	1,220 J	574 J	74.8 J	192	223	208	538
Total Organic Carbon (TOC	;)									
TOC	mg/kg	12,200 J	32,300 J	38,100 J	25,000 J	8,170 J	28,300	30,900	26,300	724

Sample ID: Sample Depth (ft):		SED142 6 - 6,5	SED143 0 - 2	SED143 2 - 4	SED144 0 - 2	SED144 2 - 4	SED144-DUP 2 - 4	SED144 4 - 6	SED144 6 - 8	SED144 8 - 10
Date Collected:	Units	10/5/2006	10/5/2006	10/5/2006	10/6/2006	10/6/2006	10/6/2006	10/6/2006	10/6/2006	10/6/2006
Inorganics	ı							•		
Chromium (Total)	mg/kg	13.2	206 J	18.9 J	769 J	332 J	778	1,960 J	447 J	10.8
Copper	mg/kg	9.1	98.2	10.6	94.8	89.3	111	159	65.6	5.4
Lead	mg/kg	6.1	1,130	24.9	980	798	1,270	3,280	1,060	5.4 U
Mercury	mg/kg	0.04 U	0.33	0.08	0.98	0.77	0.84	1.2	0.78	0.04 U
Zinc	mg/kg	40.5	1,060 J	55.7 J	2,220 J	2,470 J	4,230	14,500 J	3,380 J	33.1
Total Organic Carbon (TOC	;)		•	•	•	•	•	•	•	•
TOC	mg/kg	1,620	12,600 J	3,290 J	37,400 J	50,800 J	55,200	85,700 J	70,000 J	426

Sample ID:		SED145	SED145-DUP	SED145	SED145	SED145	SED146	SED146	SED149	SED149-DUP
Sample Depth (ft):		0 - 2	0 - 2	2 - 4	4 - 6	6 - 6.5	0 - 2	2 - 2.3	0 - 2	0 - 2
Date Collected:	Units	10/5/2006	10/5/2006	10/5/2006	10/5/2006	10/5/2006	10/5/2006	10/5/2006	10/6/2006	10/6/2006
Inorganics										
Chromium (Total)	mg/kg	67.3 J	74.3	101 J	350 J	724	215 J	197 J	95.1	76
Copper	mg/kg	70.4	78	83.6	91.5	177	76.9	76.4	72.3	73.1
Lead	mg/kg	91.1	96.2	216 J	800	1,200	927	494	132	115
Mercury	mg/kg	0.72	0.68	1	1.3	2.4	0.82	0.91	0.72	0.69
Zinc	mg/kg	200 J	216	407	1,450 J	3,300	1,200 J	975 J	288	238
Total Organic Carbon (TOC	;)									
TOC	mg/kg	25,000 J	23,000	32,700	45,700 J	65,700	29,200 J	32,800 J	30,000	33,400

Sample ID:		SED149	SED149	SED149	SED151	SED151	SED151	SED151	SED152	SED152
Sample Depth (ft):		2 - 4	4 - 6	6 - 8	0 - 2	2 - 4	4 - 6	6 - 8.25	0 - 2	2 - 4
Date Collected:	Units	10/6/2006	10/6/2006	10/6/2006	10/6/2006	10/6/2006	10/6/2006	10/6/2006	10/6/2006	10/6/2006
Inorganics										
Chromium (Total)	mg/kg	115	437	511	57.5	91	261	468	756 J	33.4 J
Copper	mg/kg	86.7	114	56.1	61.1	80.5	114	162	111	21.5
Lead	mg/kg	334	1,350	1,120	74.3	149	524	1,110	2,680	144
Mercury	mg/kg	0.86	1	1.4	0.61	0.96	1.5	2.3	1.2	0.64
Zinc	mg/kg	1,170	3,710	4,440	191	270	1,140	4,270	5,910 J	185 J
Total Organic Carbon (TOC	;)									
TOC	mg/kg	29,800	109,000	32,000	35,000	24,100	30,800	48,100	100,000 J	64,400 J

Sample ID:		SED152	SED152	SED153	SED153	SED153	SED153	SED153	SED154	SED154
Sample Depth (ft):		4 - 6	6 - 8	0 - 2	2 - 4	4 - 6	6 - 8	8 - 8.5	0 - 2	2 - 4
Date Collected:	Units	10/6/2006	10/6/2006	10/6/2006	10/6/2006	10/6/2006	10/6/2006	10/6/2006	10/5/2006	10/5/2006
Inorganics										
Chromium (Total)	mg/kg	13.3 J	14.2 J	65.8	82.8	149	396	362	160 J	281 J
Copper	mg/kg	5.7	8.1	67.7	97.5	122	120	102	160	158
Lead	mg/kg	5.6 U	6.6	92.1	108	235	2,150	843	269	729
Mercury	mg/kg	0.04 U	0.04 U	0.71	0.98	1.6	1.5	1.1	0.85	2
Zinc	mg/kg	31.2 J	43.2 J	204	216	469	1,870	1,900	470 J	1,240 J
Total Organic Carbon (TOC	;)									
TOC	mg/kg	354 J	2,120 J	19,700	21,900	30,500	51,400	32,900	27,500 J	27,600 J

TABLE 23 SUBSURFACE SEDIMENT DATA LOCATIONS NEAR OF-1

Sediment Remedial Investigation Report Former General Motors North Tarrytown Assembly Plant Sleepy Hollow, New York

Sample ID: Sample Depth (ft):		SED155 0 - 2	SED155 2 - 4	SED155 4 - 6	SED155 6 - 8
Date Collected:		10/6/2006	10/6/2006	10/6/2006	10/6/2006
Inorganics					
Chromium (Total)	mg/kg	72.3	196	66.5	99.3
Copper	mg/kg	75.7	139	71.4	117
Lead	mg/kg	111	317	102	245
Mercury	mg/kg	0.72	3.5	1.8	3.5
Zinc	mg/kg	379	895	190	392
Total Organic Carbon (TO	C)				
TOC	mg/kg	26,300	32,800	24,400	39,200

Notes:

mg/kg = milligrams per kilogram (concentration in parts per million)

Data Qualifiers:

J = Indicates an estimated value

U = Indicates that the analyte was analyzed for but not detected.

TABLE 24 SURFACE SEDIMENT GRAIN SIZE DATA NEAR-SITE LOCATIONS

Sample ID:		SED111	SED112	SED113	SED114	SED115	SED116	SED117	SED118	SED119	SED120
Sample Depth (ft):		0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5
Date Collected:	Units	9/14/2006	9/13/2006	9/13/2006	9/13/2006	9/12/2006	9/12/2006	9/18/2006	9/19/2006	9/21/2006	10/10/2006
Grain size											
Coarse Gravel	%	0.8	0	1.5	8.5	1.1	0.5	2.2	19.1	0	NA
Coarse Sand	%	0.8	0	3.5	12.5	3.7	0.7	2.6	15.2	0.4	2.6
Medium Sand	%	3.5	6.9	5.5	22.1	7.9	2.9	5.3	16.9	6.5	8.2
Fine Sand	%	8.4	13.2	86.2	31.9	22.7	11	44.6	42.4	4.7	23.7
Silt/Clay	%	86.5	79.9	3.3	24.9	64.6	84.9	45.3	6.4	88.4	65.5

TABLE 24 SURFACE SEDIMENT GRAIN SIZE DATA NEAR-SITE LOCATIONS

Sample ID:		SED121	SED121-DUP	SED122	SED123	SED124	SED125	SED126	SED127	SED128	SED129
Sample Depth (ft):		0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5
Date Collected:	Units	9/19/2006	9/19/2006	10/10/2006	9/19/2006	9/19/2006	10/4/2006	10/4/2006	9/19/2006	9/19/2006	10/10/2006
Grain size											
Coarse Gravel	%	0	0	NA	0	0	0.4	10.4	0	0	NA
Coarse Sand	%	0.2	0.6	0.1	0.1	0.5	1.3	7.4	0	0.5	0.9
Medium Sand	%	3.1	2.1	5.3	2.3	2	3.5	29.4	1.5	5.1	12
Fine Sand	%	10.1	9.7	23.9	9.1	5.6	8.6	50.2	6.7	7.3	21.8
Silt/Clay	%	86.6	87.6	68.7	88.5	91.9	86.2	2.6	91.8	87.1	64.9

TABLE 24 SURFACE SEDIMENT GRAIN SIZE DATA NEAR-SITE LOCATIONS

Sample ID:		SED130	SED131	SED132	SED133	SED134	SED135	SED136	SED137	SED138	SED139
Sample Depth (ft):		0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5
Date Collected:	Units	10/10/2006	10/10/2006	10/10/2006	10/10/2006	10/10/2006	10/10/2006	10/10/2006	10/10/2006	9/21/2006	9/20/2006
Grain size											
Coarse Gravel	%	NA	2.5	0.7							
Coarse Sand	%	1	2.6	0.3	1.1	1	1.1	1.1	1	0.7	0.7
Medium Sand	%	4.3	10.6	7.5	7	6.5	16.5	8.6	14.6	3.4	3.3
Fine Sand	%	15.9	19.1	22	13.3	18	34.6	16	30.1	15	9.4
Silt/Clay	%	78.4	67.7	70.2	78	73.2	45.2	70.8	50.9	78.4	85.9

TABLE 25 SURFACE SEDIMENT GRAIN SIZE DATA BACKGROUND LOCATIONS

Sample ID: Sample Depth (ft): Date Collected:		SED100 0 - 0.5 9/20/2006	SED101 0 - 0.5 9/20/2006	SED102 0 - 0.5 9/20/2006	SED103 0 - 0.5 9/20/2006	SED103-DUP 0 - 0.5 9/20/2006	SED104 0 - 0.5 9/21/2006	SED105 0 - 0.5 9/21/2006	SED106 0 - 0.5 9/20/2006	SED107 0 - 0.5 9/13/2006	SED108 0 - 0.5 9/18/2006	SED 109 0 - 0.5 9/13/2006	SED 110 0 - 0.5 9/18/2006
Grain size													
Coarse Gravel	%	9.6	5.2	0	1.5	0	0.9	11.4	7.5	9.1	4.7	17.3	4
Coarse Sand	%	8.9	1.9	0.4	0.6	0.3	2.1	1.6	0.7	4.3	0.6	1.9	0.4
Medium Sand	%	51.5	37.5	1.8	3.3	3.3	10.7	2.4	3.6	15.3	3.8	9.3	1
Fine Sand	%	26.2	23.9	5.3	5.2	5.2	36.4	16.4	7.9	16.2	9.4	16.6	2.9
Silt/Clay	%	3.8	31.5	92.5	89.4	91.2	49.9	68.2	80.3	55.1	81.5	54.9	91.7

Sample ID:		SED123	SED123	SED123	SED123	SED123	SED123	SED123	SED123
Sample Depth (ft):		0 - 0.2	0.2 - 0.3	0.3 - 0.5	0.5 - 0.7	0.7 - 0.8	0.8 - 1	1.3 - 1.7	2 - 2.3
Date Collected:	Units	10/4/2006	10/4/2006	10/4/2006	10/4/2006	10/4/2006	10/4/2006	10/4/2006	10/4/2006
Radiochemical Parameter									
Beryllium-7	pCi/g	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
Cesium-137	pCi/g	0.186 ± 0.074	0.199 ± 0.034	0.185 ± 0.049	0.092 ± 0.049	0.01 U	0.01 U	0.01 U	0.01 U
Lead-210	pCi/g	1.7 ± 0.14	1.61 ± 0.15	1.22 ± 0.13	0.65 ± 0.11	0.69 ± 0.11	0.72 ± 0.11	0.78 ± 0.11	0.69 ± 0.11

Sample ID:		SED123	SED123	SED123	SED123	SED123	SED123	SED123	SED123	SED123
Sample Depth (ft):		2.7 - 3	3.3 - 3.7	4 - 4.3	4.7 - 5	5.3 - 5.7	6 - 6.3	6.7 - 7	7.3 - 7.7	8 - 8.3
Date Collected:	Units	10/4/2006	10/4/2006	10/4/2006	10/4/2006	10/4/2006	10/4/2006	10/4/2006	10/4/2006	10/4/2006
Radiochemical Parameter										
Beryllium-7	pCi/g	0.1 U	0.1 U	0.1 U	0.1 U					
Cesium-137	pCi/g	0.01 U	0.01 U	0.01 U	0.01 U					
Lead-210	pCi/g	0.54 ± 0.10	0.76 ± 0.10	0.73 ± 0.10	0.77 ± 0.11	0.72 ± 0.09	0.54 ± 0.09	0.48 ± 0.09	0.54 ± 0.10	0.33 ± 0.07

Sample ID:		SED126	SED126	SED126	SED126	SED126	SED126	SED128
Sample Depth (ft):		0 - 0.2	0.2 - 0.3	0.3 - 0.5	0.5 - 0.7	0.7 - 0.8	0.8 - 1	0 - 0.17
Date Collected:	Units	10/10/2006	10/10/2006	10/10/2006	10/10/2006	10/10/2006	10/10/2006	10/12/2006
Radiochemical Parameter								
Beryllium-7	pCi/g	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
Cesium-137	pCi/g	0.053 ± 0.027	0.082 ± 0.021	0.186 ± 0.048	0.276 ± 0.054	0.299 ± 0.033	0.234 ± 0.032	0.244 ± 0.099
Lead-210	pCi/g	0.31 ± 0.11	0.44 ± 0.12	1.01 ± 0.14	1.03 ± 0.13	0.83 ± 0.15	0.95 ± 0.14	2.15 ± 0.27

Sample ID:		SED128	SED128	SED128	SED128	SED128	SED128	SED128	SED128
Sample Depth (ft):		0.17 - 0.33	0.33 - 0.5	0.5 - 0.67	0.67 - 0.83	0.83 - 1	1.33 - 1.67	2 - 2.33	2.67 - 3
Date Collected:	Units	10/12/2006	10/12/2006	10/12/2006	10/12/2006	10/12/2006	10/12/2006	10/12/2006	10/12/2006
Radiochemical Parameter									
Beryllium-7	pCi/g	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
Cesium-137	pCi/g	0.207 ± 0.053	0.46 ± 0.175	0.242 ± 0.055	0.25 ± 0.042	0.283 ± 0.067	0.254 ± 0.080	0.448 ± 0.071	0.434 ± 0.036
Lead-210	pCi/g	2.14 ± 0.17	2.33 ± 0.19	1.75 ± 0.14	1.99 ± 0.16	2.12 ± 0.14	1.6 ± 0.15	0.72 ± 0.09	1.71 ± 0.15

Sample ID:		SED128	SED128	SED128	SED138	SED138	SED138	SED138	SED138
Sample Depth (ft):		3.33 - 3.67	4 - 4.33	4.67 - 5	0 - 0.17	0.17 - 0.33	0.33 - 0.5	0.5 - 0.67	0.67 - 0.83
Date Collected:	Units	10/12/2006	10/12/2006	10/12/2006	10/12/2006	10/12/2006	10/12/2006	10/12/2006	10/12/2006
Radiochemical Parameter									
Beryllium-7	pCi/g	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
Cesium-137	pCi/g	0.801 ± 0.068	0.01 U	0.01 U	0.232 ± 0.051	0.01 U	0.01 U	0.01 U	0.01 U
Lead-210	pCi/g	0.65 ± 0.10	0.69 ± 0.10	0.21 ± 0.08	1.17 ± 0.13	0.62 ± 0.13	0.66 ± 0.12	0.34 ± 0.09	0.38 ± 0.10

Draft Sediment Remedial Investigation Report Former General Motors North Tarrytown Assembly Plant Sleepy Hollow, New York

Sample ID:		SED138	SED138	SED138	SED138	SED138	SED138	SED138	SED138
Sample Depth (ft):		0.83 - 1	1.33 - 1.67	2 - 2.33	3.33 - 3.67	4.67 - 5	6 - 6.33	7.33 - 7.67	8.67 - 9
Date Collected:	Units	10/12/2006	10/12/2006	10/12/2006	10/12/2006	10/12/2006	10/12/2006	10/12/2006	10/12/2006
Radiochemical Parameter									
Beryllium-7	pCi/g	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
Cesium-137	pCi/g	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
Lead-210	pCi/g	0.32 ± 0.08	0.29 ± 0.07	0.36 ± 0.10	0.35 ± 0.08	0.5 ± 0.10	0.4 ± 0.10	0.39 ± 0.09	0.42 ± 0.08

Notes:

Data Qualifiers:

U = Indicates that the analyte was analyzed but not detected.

Sample ID:		SED103	SED103	SED103	SED103	SED103	SED103	SED103	SED103
Sample Depth (ft):		0 - 0.2	0.2 - 0.3	0.3 - 0.5	0.5 - 0.7	0.7 - 0.8	0.8 - 1	1.3 - 1.7	2 - 2.3
Date Collected:	Units	10/5/2006	10/5/2006	10/5/2006	10/5/2006	10/5/2006	10/5/2006	10/5/2006	10/5/2006
Radiochemical Parameter									
Beryllium-7	pCi/g	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
Cesium-137	pCi/g	0.246 ± 0.064	0.175 ± 0.071	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
Lead-210	pCi/g	0.94 ± 0.12	0.48 ± 0.10	0.33 ± 0.09	0.28 ± 0.09	0.39 ± 0.09	0.38 ± 0.10	0.3 ± 0.09	0.39 ± 0.09

Sample ID:		SED103	SED103	SED103	SED103	SED103	SED103	SED103	SED104
Sample Depth (ft):		2.7 - 3	3.3 - 3.7	4 - 4.3	4.7 - 5	5.3 - 5.7	6 - 6.3	6.7 - 7.2	0 - 0.2
Date Collected:	Units	10/5/2006	10/5/2006	10/5/2006	10/5/2006	10/5/2006	10/5/2006	10/5/2006	10/5/2006
Radiochemical Parameter									
Beryllium-7	pCi/g	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
Cesium-137	pCi/g	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.113 ± 0.043
Lead-210	pCi/g	0.4 ± 0.10	0.38 ± 0.09	0.46 ± 0.09	0.41 ± 0.09	0.41 ± 0.09	0.39 ± 0.11	0.39 ± 0.09	1.21 ± 0.12

Sample ID:		SED104	SED104	SED104	SED104	SED104	SED104	SED104	SED104
Sample Depth (ft):		0.2 - 0.3	0.3 - 0.5	0.5 - 0.7	0.7 - 0.8	0.8 - 1	1.3 - 1.7	2 - 2.3	2.7 - 3
Date Collected:	Units	10/5/2006	10/5/2006	10/5/2006	10/5/2006	10/5/2006	10/5/2006	10/5/2006	10/5/2006
Radiochemical Parameter									
Beryllium-7	pCi/g	0.1 U	0.1 U	0.1 U	0.1 U				
Cesium-137	pCi/g	0.157 ± 0.026	0.207 ± 0.047	0.431 ± 0.058	0.133 ± 0.025	0.01 U	0.01 U	0.01 U	0.01 U
Lead-210	pCi/g	1.12 ± 0.11	0.67 ± 0.10	0.59 ± 0.10	0.44 ± 0.08	0.48 ± 0.09	0.41 ± 0.08	0.42 ± 0.09	0.47 ± 0.11

Draft Sediment Remedial Investigation Report Former General Motors North Tarrytown Assembly Plant Sleepy Hollow, New York

Sample ID: Sample Depth (ft): Date Collected:		SED104 3.3 - 3.7 10/5/2006	SED104 4 - 4.3 10/5/2006
Radiochemical Parameter			
Beryllium-7	pCi/g	0.1 U	0.1 U
Cesium-137	pCi/g	0.01 U	0.01 U
Lead-210	pCi/g	0.41 ± 0.13	0.44 ± 0.12

Notes:

Data Qualifiers:

U = Indicates that the analyte was analyzed for but not detected.

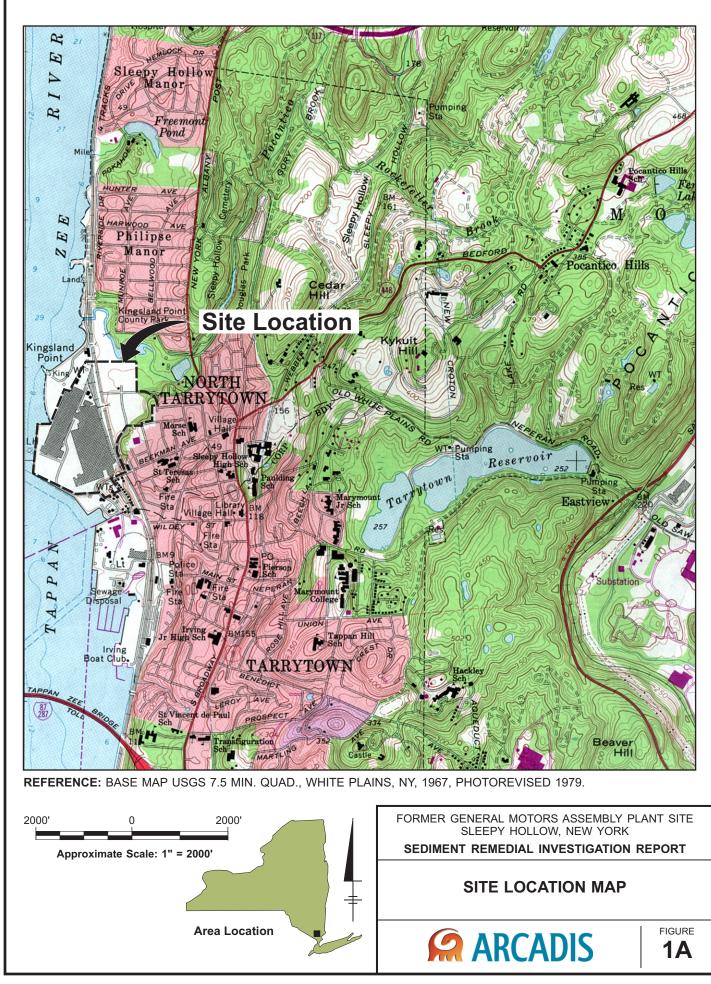
TABLE 28 GEOTECHNICAL TESTING DATA

Sediment Remedial Investigation Report

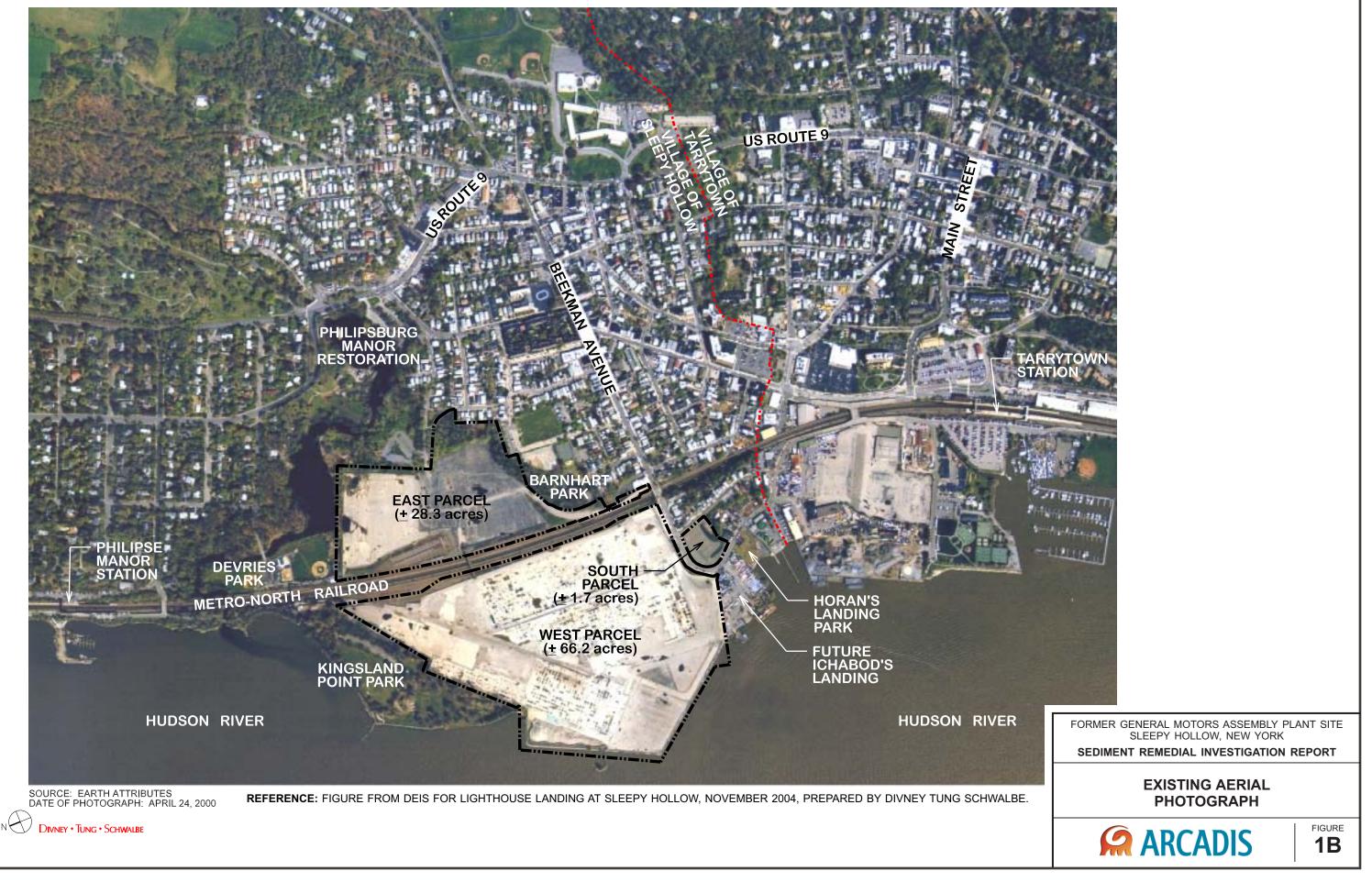
Former General Motors North Tarrytown Assembly Plant

Sleepy Hollow, New York

Sample ID:		SED147	SED149	SED149	SED149	SED149	SED150	SED150	SED150	SED150	SED150
Sample Depth(ft BGS):		0 - 0.8	0 - 2	2 - 4	4 - 6	6 - 8	0 - 1	1 - 2	2 - 4	4 - 6	6 - 7.5
Date Collected:	Units	10/10/06	10/11/06	10/11/06	10/11/06	10/11/06	10/10/06	10/10/06	10/10/06	10/10/06	10/10/06
Geotech											
Atterberg Liquid Limit (LL)	%	51	94	89	95	NP	69	69	67	66	36
Atterberg Plasticity Index (PI)	%	11	47	51	50	NV	15	17	15	16	9
Bulk Density	pcf	NA	84.41	99.09	94.86	134.3	NA	NA	NA	NA	NA
Percent Moisture	%	61.8	117.3	87.9	89	18.4	139.6	133.6	117	99.9	42.9
Specific gravity	unitless	2.627	2.559	2.616	2.55	2.702	2.461	2.624	2.638	2.503	2.518
Grainsize											
Coarse Sand	%	4.4	0.4	0.6	1	0.3	0	0	0	0	1.7
Medium Sand	%	29.5	12.7	7.4	6.5	23.4	0	0.2	1.4	0.6	19.5
Fine Sand	%	17.9	4.2	6	7.6	58	0.8	0.6	2	2.2	32.8
Cobbles	%	0	0	0	0	0	0	0	0	0	0
Gravel	%	4.7	0	0	0.8	0	0	0	0	0	0.4
Sand	%	51.8	17.3	14	15.1	81.7	0.8	0.8	3.4	2.8	54
Silt	%	34.3	49.8	61.7	55.5	13.4	66.5	64.4	58.3	60.1	31.5
Clay	%	9.2	32.9	24.3	28.6	4.9	32.7	34.8	38.3	37.1	14.1


Notes:

NA = Not analyzed


pcf = pounds per cubic feet

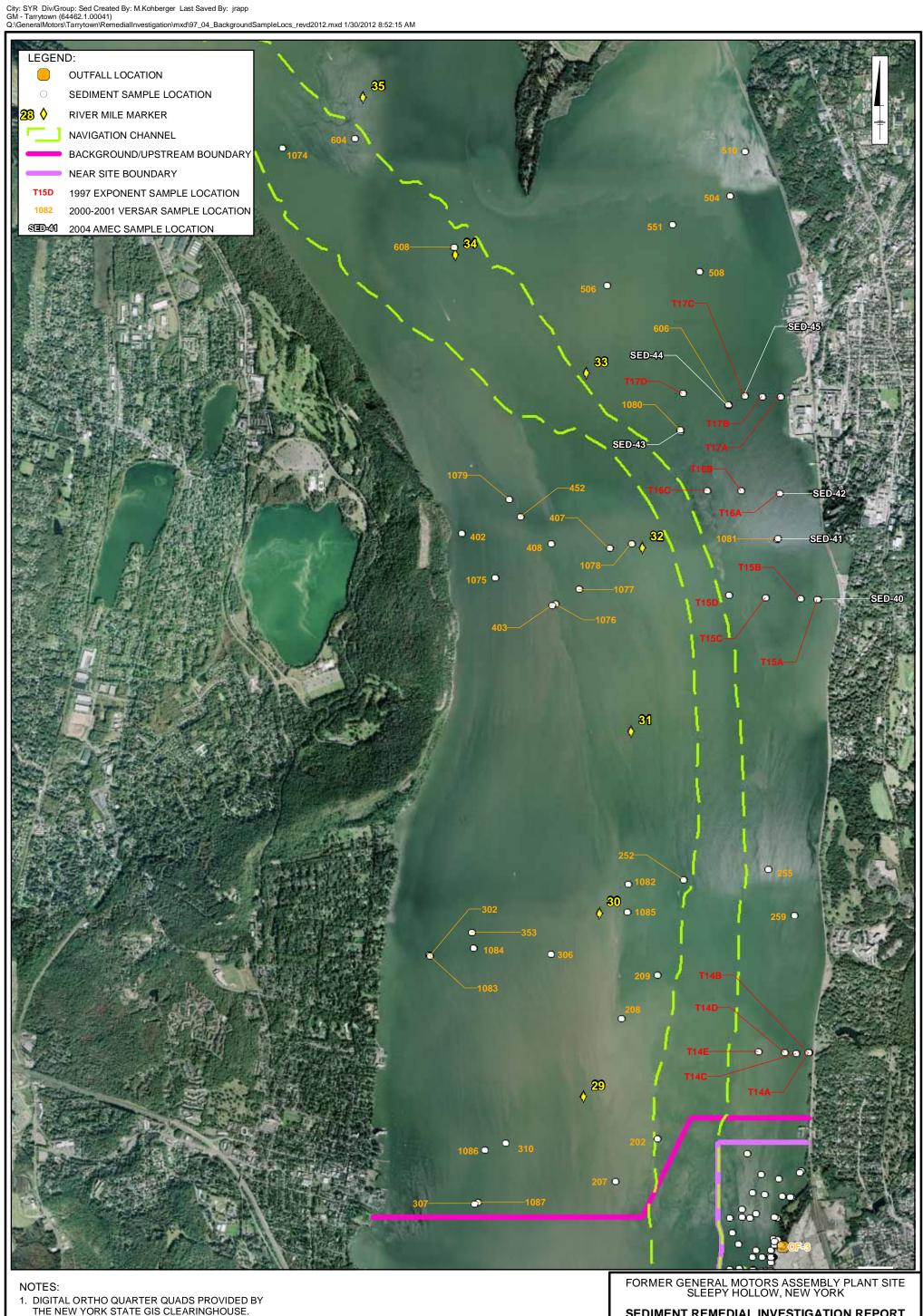
Figures

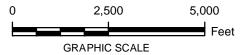
01/30/2012 SYRACUSE, NY-ENV/CAD DJHOWES B0064462/0001/00041/CDR/64462N01.CDR

CAD DJHO /2012 SYRAC

//30/2012 SYRACUSE, NY-ENV/CAD DJHOWE 0064462/0001/00041/CDR/64462G03.CDR

CUSE, NY-ENV/CAD-DJHC 0041/CDR/64462G01.CDR

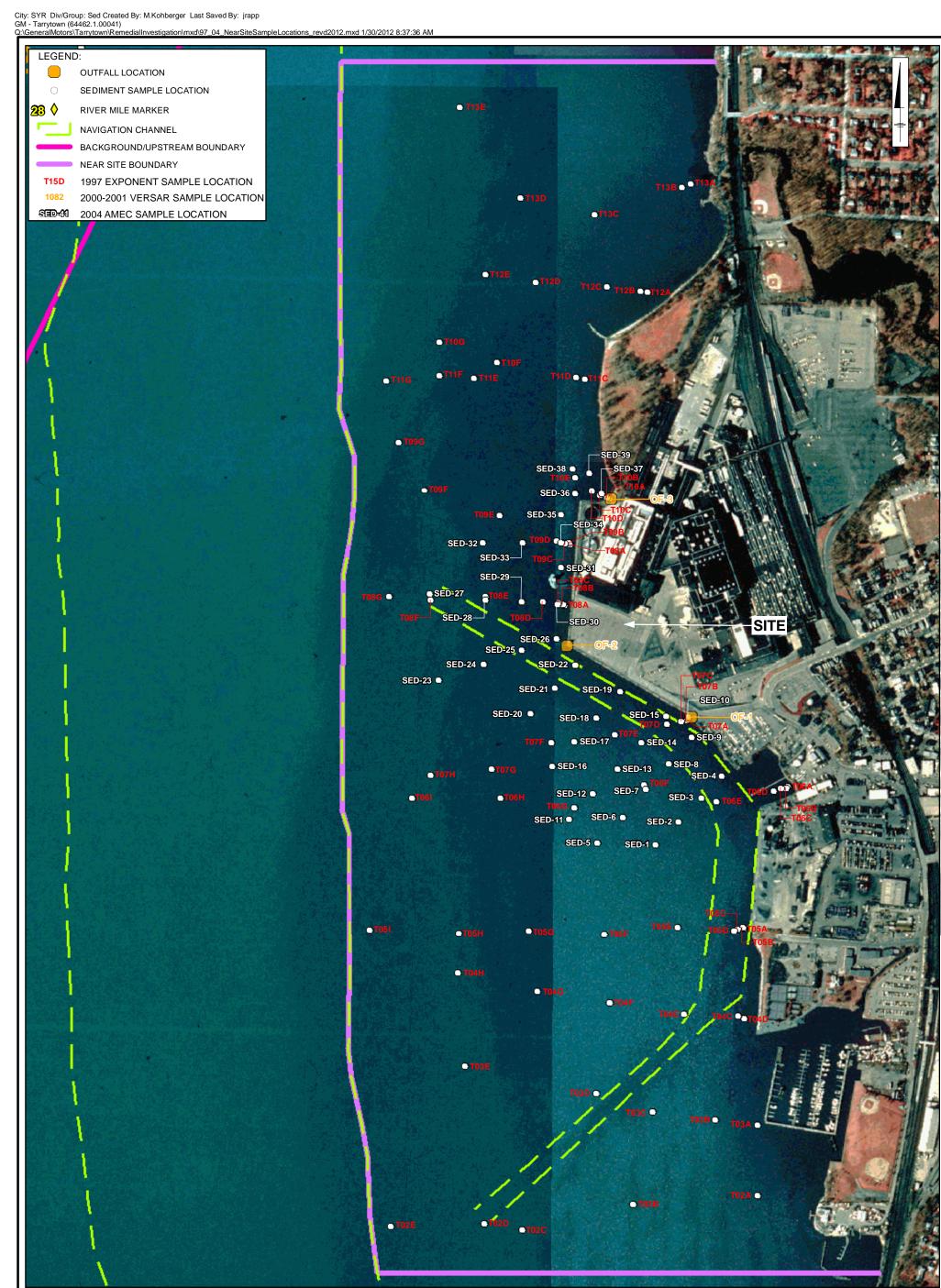


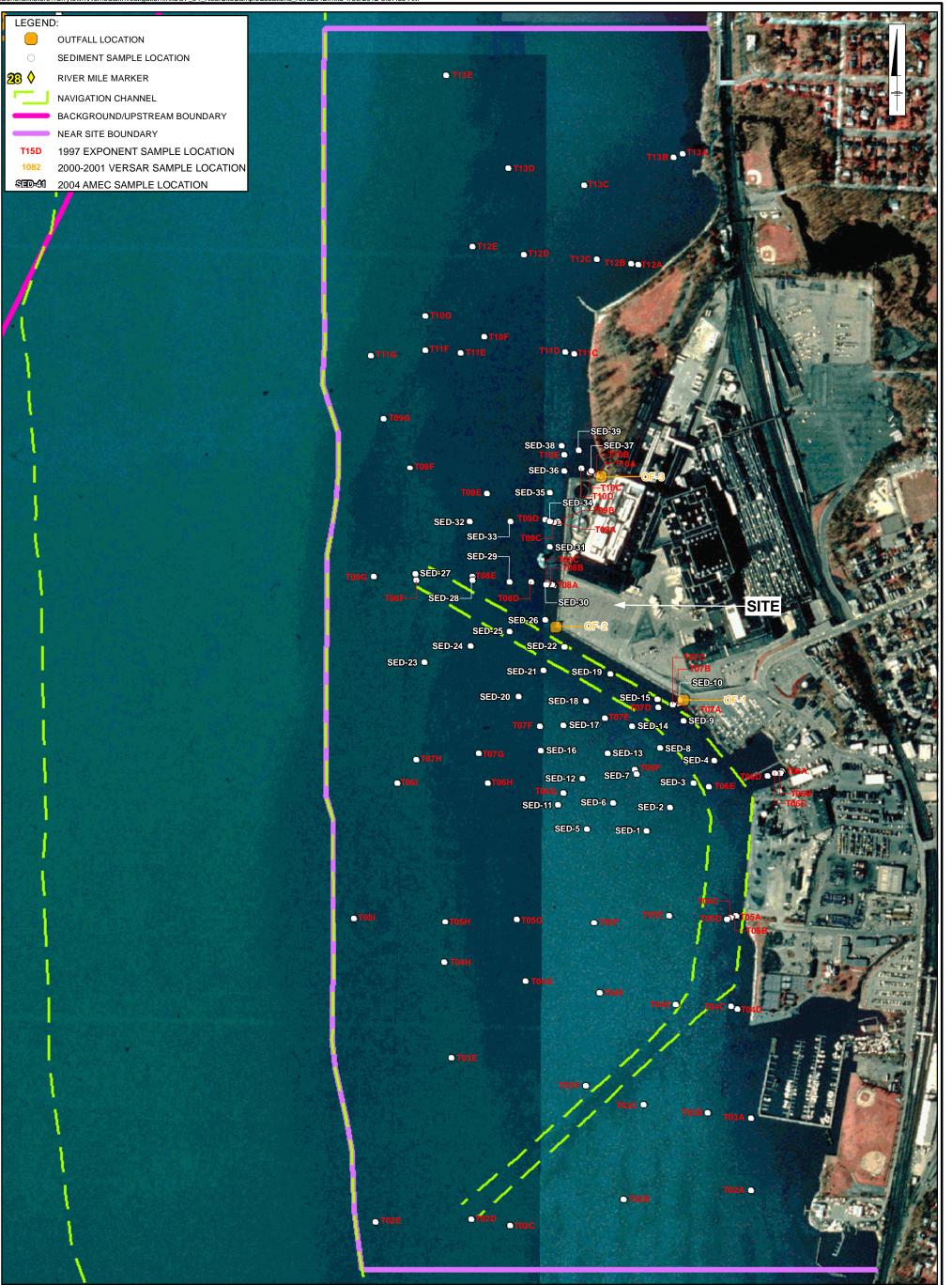

AMENDED RIVERFRONT **DEVELOPMENT CONCEPT PLAN**

SEDIMENT REMEDIAL INVESTIGATION REPORT

FORMER GENERAL MOTORS ASSEMBLY PLANT SITE SLEEPY HOLLOW, NEW YORK

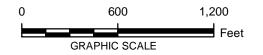
2. NAVIGATION CHANNEL DIGITIZED FROM NOAA NAUTICAL CHART 12343 18th ED., JUNE 2002.


SEDIMENT REMEDIAL INVESTIGATION REPORT


1997 - 2004 BACKGROUND SAMPLE LOCATIONS

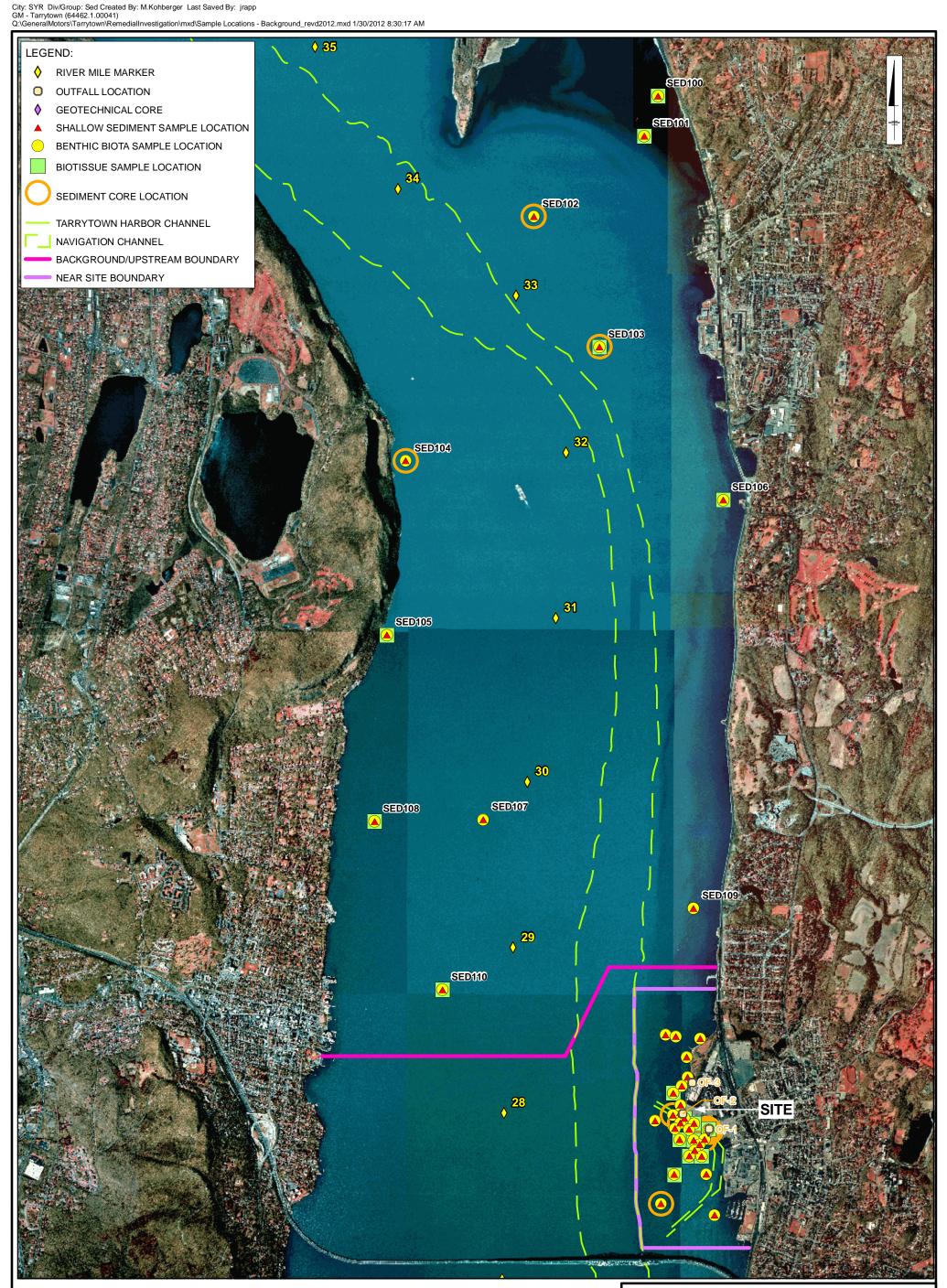
FIGURE

2



NOTES:

- 1. DIGITAL ORTHO QUARTER QUADS PROVIDED BY THE NEW YORK STATE GIS CLEARINGHOUSE.
- 2. NAVIGATION CHANNEL DIGITIZED FROM NOAA NAUTICAL CHART 12343 18th ED., JUNE 2002.


FORMER GENERAL MOTORS ASSEMBLY PLANT SITE SLEEPY HOLLOW, NEW YORK

SEDIMENT REMEDIAL INVESTIGATION REPORT

1997 - 2004 NEAR-SITE SAMPLE LOCATIONS

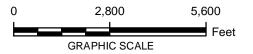
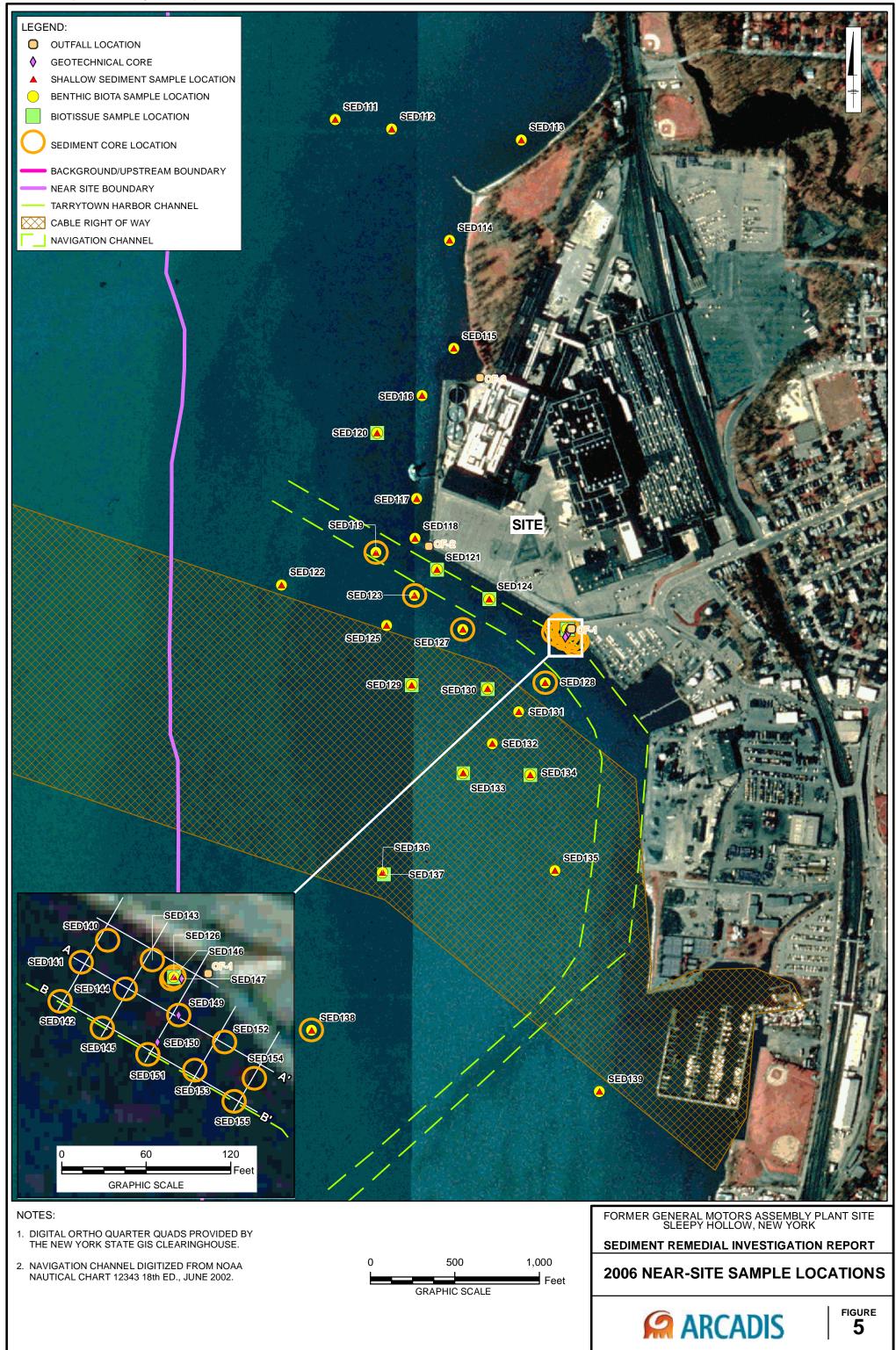


FIGURE 3

NOTES:

- 1. DIGITAL ORTHO QUARTER QUADS PROVIDED BY THE NEW YORK STATE GIS CLEARINGHOUSE.
- 2. NAVIGATION CHANNEL DIGITIZED FROM NOAA NAUTICAL CHART 12343 18th ED., JUNE 2002.

FORMER GENERAL MOTORS ASSEMBLY PLANT SITE SLEEPY HOLLOW, NEW YORK


SEDIMENT REMEDIAL INVESTIGATION REPORT

2006 BACKGROUND SAMPLE LOCATIONS

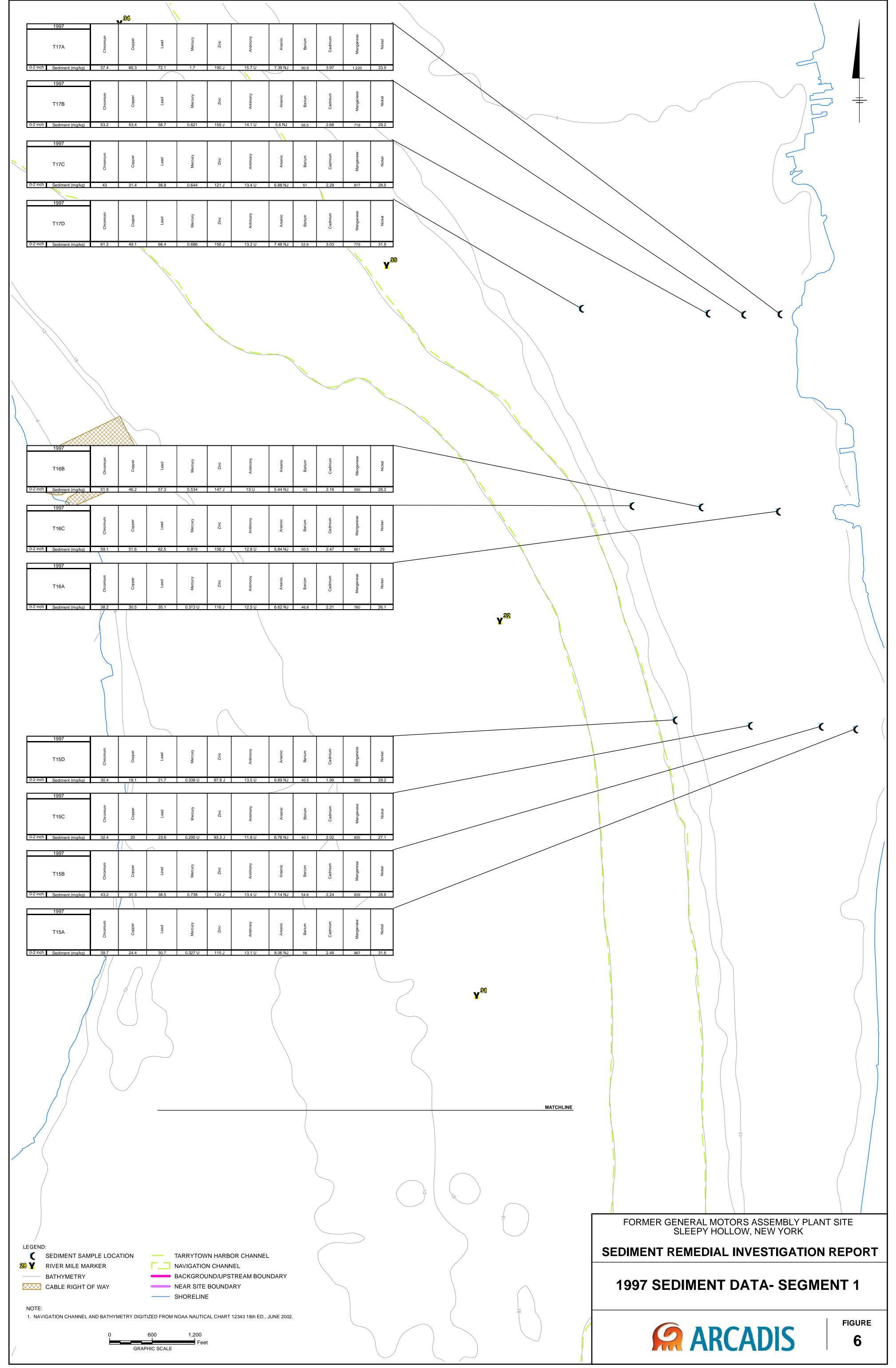
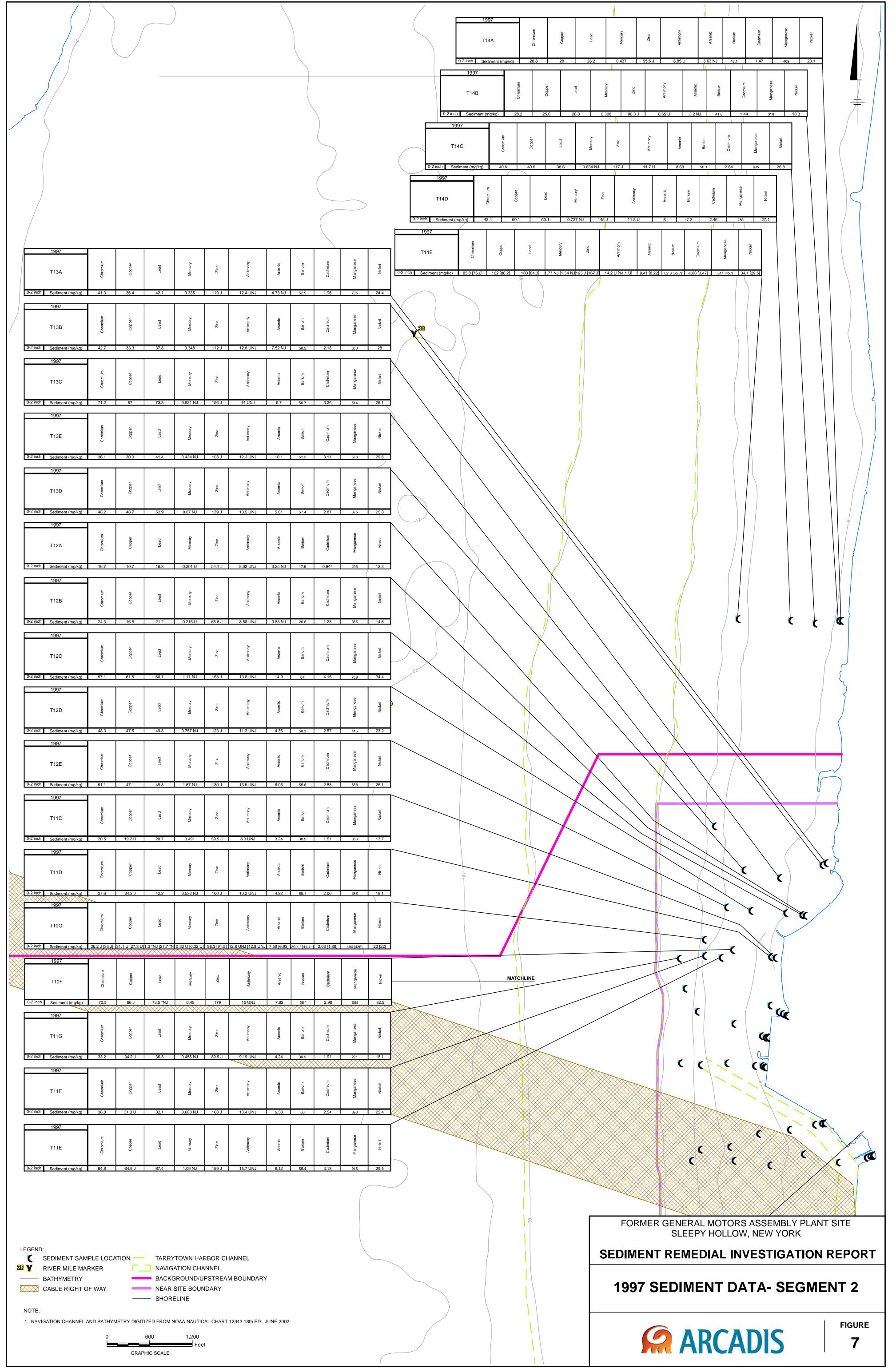


FIGURE 4

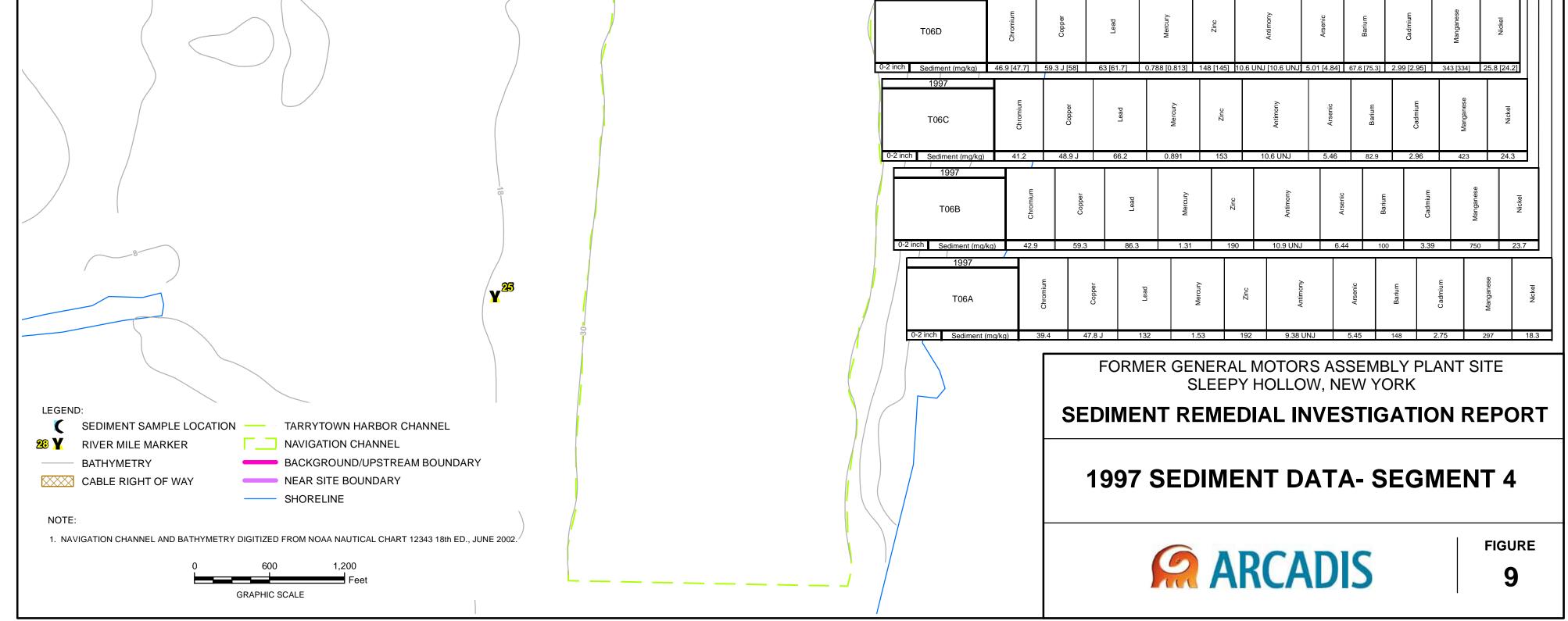
City: SYR Div/Group: Sed Created By: M.Kohberger Last Saved By: jrapp GM - Tarrytown (64462.1.00041) Q:\GeneralMotors\Tarrytown\RemedialInvestigation\mxd\Sample Locations - Near Site_revd2012.mxd 1/30/2012 8:23:57 AM

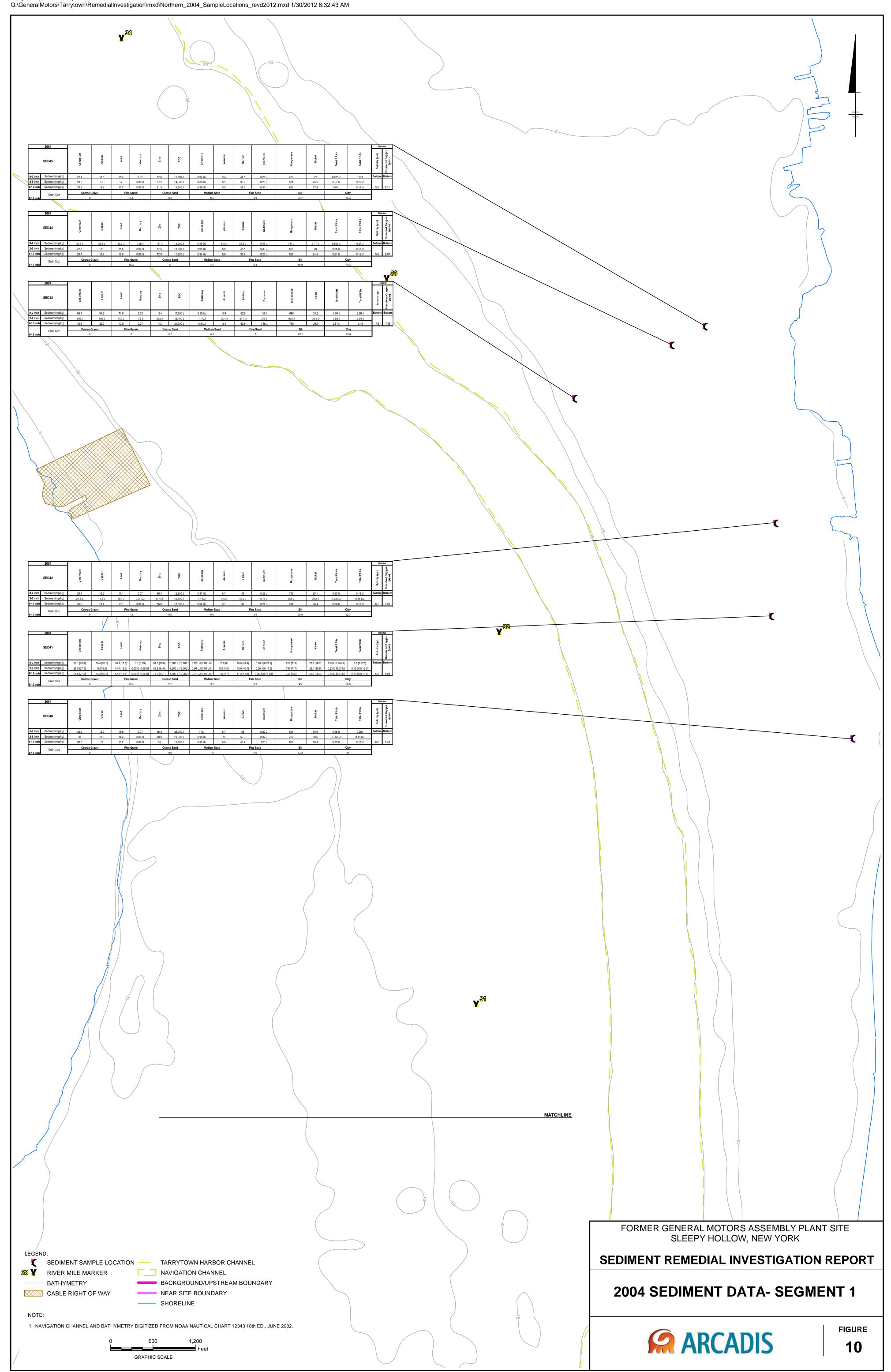


City: SYR Div/Group: Sed Created By: K.Sinsabaugh Last Saved By: jrapp GM - Tarrytown (64462.1.00041) Q:\GeneralMotors\Tarrytown\RemedialInvestigation\mxd\Northern_1997_SampleLocations_Revd2012.mxd 1/30/2012 8:33:33 AM

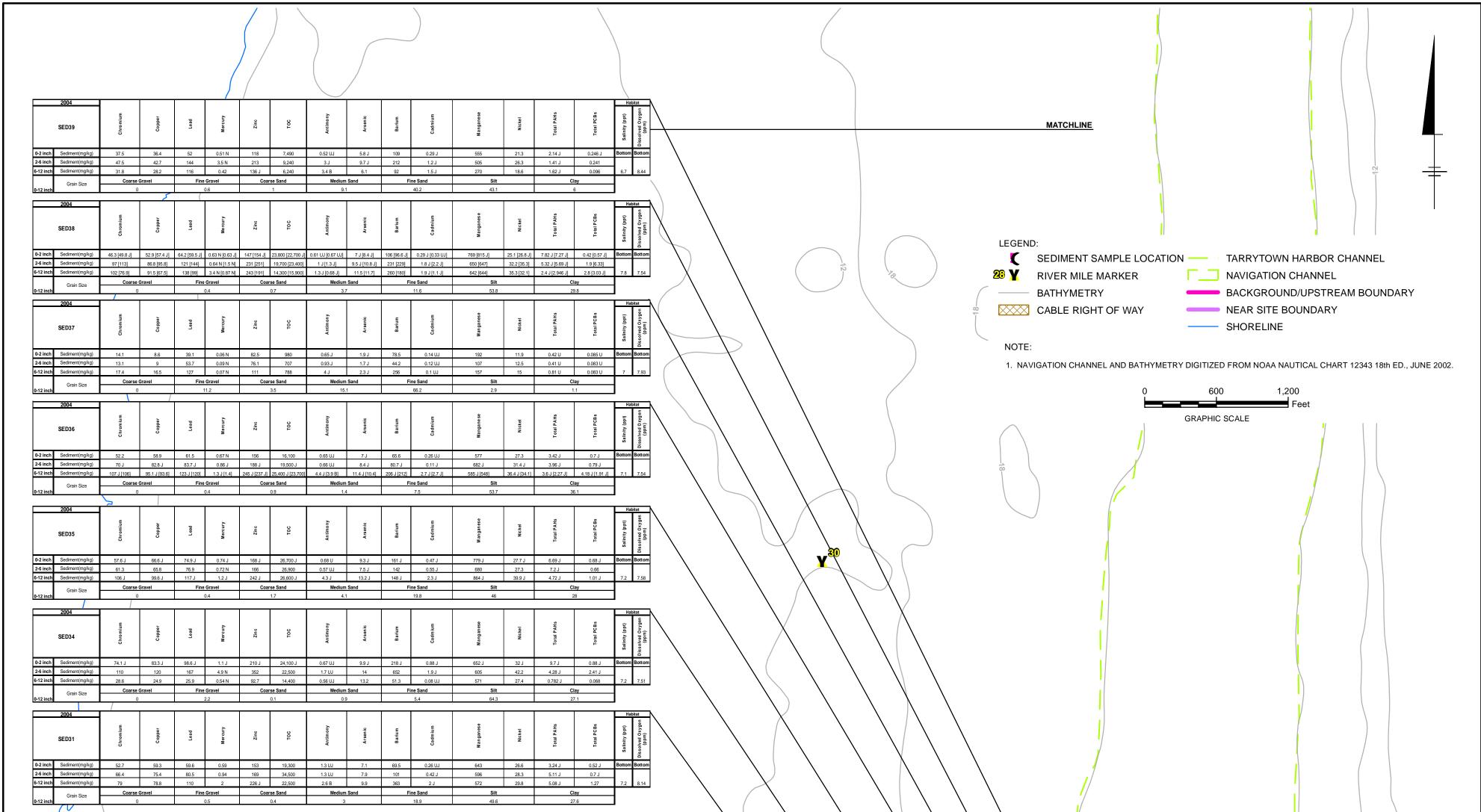
City: SYR Div/Group: SED GIS Created By: K.Sinsabaugh Last Saved By: jrapp Tarrytown (64462.0041)

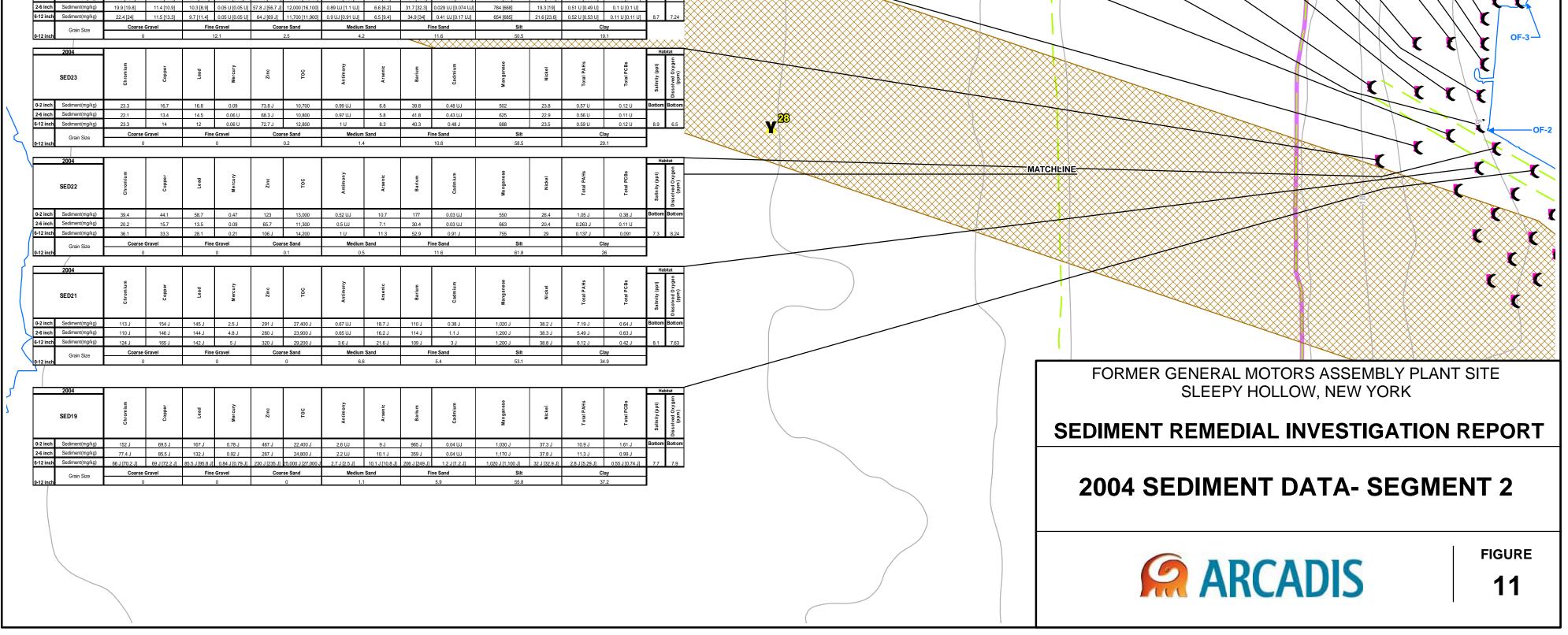
Q:\GeneralMotors\Tarrytown\RemedialInvestigation\mxd\Central_1997_SampleLocations_revd2012.mxd 1/30/2012 8:36:43 AM

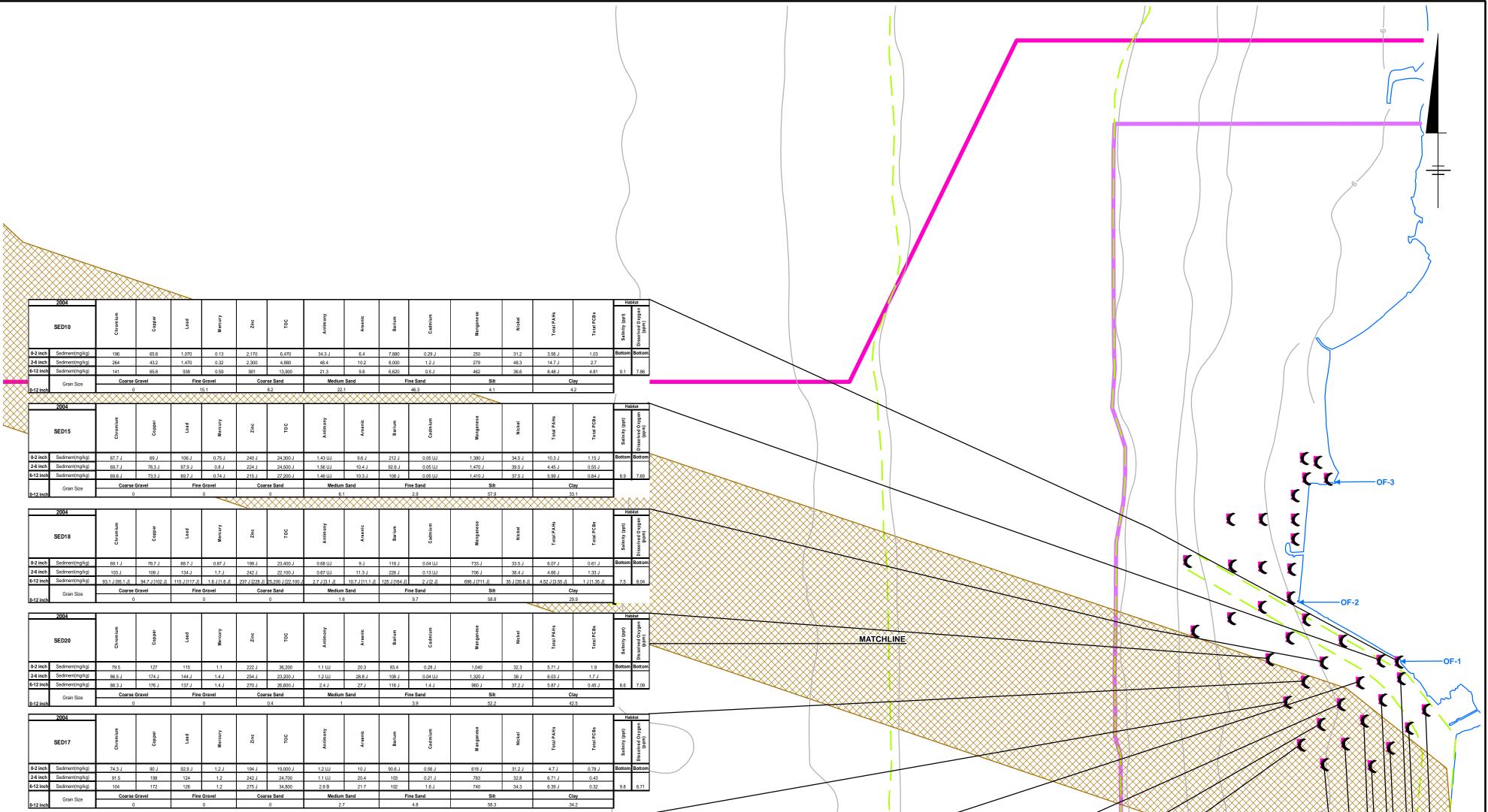

City: SYR Div/Group: SED GIS Created By: K.Sinsabaugh Last Saved By: jrapp Tarrytown (64462.0041) Q:\GeneralMotors\Tarrytown\RemedialInvestigation\mxd\Southern_West_1997_SampleLocations_revd2012.mxd 1/30/2012 8:21:35 AM


1997	~~~~		ampleLocations_revo2012.r	1		
T09G	Chromium Copper Lead	Mercury	Antimony Arsenic	Barium Cadmium	Manganese	
0-2 inch Sediment (mg/kg) 1997 T09F	B3.2 55 J 73.5 *	JJ 0.616 157	13.2 UNJ 7.46 Autimounic	50.3* 4.19	486 28.3	
1997	34.2 J 26.2 U 35.6 *1		13.4 UNJ 7.11	43 * 2.73	577 28.2 × × × × × × × × × × × × × × × × × × ×	
T10E 0-2 inch Sediment (mg/kg) 1997	58.9 57.8 J 58.3 *		16.3 UNJ 9.56	62.4 * 2.59	894 29.2	
T09E 0-2 inch Sediment (mg/kg)	E b	JU 0.556 110	Autimu Haranica Haran	щина ванистика 49.1 * 2.38	as auguste set and an auguste set and an auguste set and a set an auguste set and a set an auguste s Auguste set an auguste se	
1997 T10D	Chromium Copper	Mercury Zinc	Antimony Arsenic	Barium Cadmium	Manganese	
0-2 inch Sediment (mg/kg) 1997 T10C	14.4 J 8.03 U 30.6 *	U 0.2 U 68.3	2.05	17.4 * 0.752	164 12.9	
	5 17.1 J 12 U 35.4 *1	N 0.19 U 82.1	- -	137 * 0.951	vg 136 13.6	
T10B 0-2 inch Sediment (mg/kg) 1997	Image: Second	JJ 0.176 U 91.8	7.03 UNJ 2.56	Baujing Baujin	789 19.2	
T10A	Chromium Copper Lead	Mercury	Antimony Arsenic	Barium Cadmium	Manganese	WARTER WE
1997 T08G	13.4 J 9.57 U 35 *N	J 0.186 0 76.5	A VICE A	۵۹۲.0 * 6.8 <u>8</u> عقر ترس کو که کو که کو که	Mage Constant And Mage See Signal	
0-2 inch Sediment (mg/kg) 1997	31.4 30.4 48.4	0.318 U 103	2.12 UNJ 8.85	39.9 2.06	556 28.9	
T08F 0-2 inch Sediment (mg/kg) 1997	40.7 45.2 48.5	0.515 120	1.96 UNJ 7.14	E E <the< th=""> <the< th=""> <the< th=""> <the< th=""></the<></the<></the<></the<>	452 25.8	
T08E	Copped Co	Vince Structure Wercard	Auouuiu Vuoouuitu Vuoouuitu Vuoouuitu V Vuoouuitu V Vuoouuitu V Vuoouuitu V Vuoouuitu V Vuoouuitu V Vuoouuitu Vuoouuitu Vuoouuitu Vuoouuitu Vuoouuitu Vuoouuitu Vuoouuitu Vuoouuitu Vuoouuitu Vuoouuitu Vuoouutu Vuootu V	Cadmiu Cadmiu Bariu Bariu Bariu Bariu Bariu Cadmiu	Manganese Nickel	
1997 T08D	Copper um	All	Antimony	C aq miu C aq miu C aq miu	Manganese Nickel	
0-2 inch Sediment (mg/kg) 1997	13.2 14.5 27.2	0.205 U 81.3	1.37 UNJ 3.01	54.1 1.16	321 21.4	
T08C 0-2 inch Sediment (mg/kg) 1997	41 51.1 118	0.393 189	1.63 UNJ 4.46	244 1.74	397 29.2	
T08B 0-2 inch Sediment (mg/kg)	Line Constraints of the second	3.2] 0.237 [0.259] 94.3 [92.	2.4] 1.46 UNJ [1.42 UNJ] 4.41 [3.97]	B3.3 [87] 1.57 [1.52]	98 99 99 99 99 99 99 99 99 99 99 99 99 9	
1997 T08A	Chromium Copper Lead	Mercury Zinc	Antimony Arsenic	Barium Cadmium	Manganese Nickel	
0-2 inch Sediment (mg/kg) 1997 T07H	34.9 44.3 72.5	0.419 125	Antimony Arsenic Antimony	151 2.16	390 27.9	100 Totomium admium Arsenic Vickel Lead Copper Tromium admium Arsenic Vickel Vi
0-2 inch Sediment (mg/kg) 1997	53.6 61.3 65.4	0.799 148	2.14 UNJ 8.57	45.7 2.33	≥ 419 28.2	
T06I 0-2 inch Sediment (mg/kg) 1997	Image: Second	0.668 151	14.2 UNJ 4.17	лі ії	Vickei Wangan Wickei 607 32	T07F Image: Sediment (mg/kg) 29.6 32.7 34.7 0.412 93.7 1.66 UNJ 6.31 42.4 1.5 553 18.1
T05I	C Copper Lead	Zinc Zinc	Antimony Arsenic	Cadmium Cadmium	Manganese	Nickel Manganese Arsenic Arsenic Lead Luny Lead Lead Lead Lead Lead Lead Lead Lead
1997 T07G	C C C P C P C P C P C P C P C P C P C P	<u>υ.ο</u> εσ <u>υ.ο</u> br><u>υ.ο</u> εσ <u>υ.ο</u> εσ <u>υ.ο</u> εσ <u>υ.ο</u> εσ <u>υ.ο</u> εσ <u>υ.ο</u> εσ <u>υ.ο</u> <u>υ.ο</u> <u>υ.ο</u> <u>υ.ο</u> <u>υ.ο</u> <u>υ.ο</u> <u>υ.ο</u> <u>υ.ο</u> <u></u>	Arsenic Arsenic	V6.5 2.57 Cad miu Miu Bau Bau Bau Bau Bau Bau Bau Bau Bau Ba	Wanganese Nickel	0-2 inch Sediment (mg/kg) 41.7 66 75.1 0.833 158 11.7 UNJ 10.9 56.1 2.99 454 27.4 1997 Image: Sediment (mg/kg) 41.7 66 75.1 0.833 158 11.7 UNJ 10.9 56.1 2.99 454 27.4 1997 Image: Sediment (mg/kg) I
1997	45.6 77.6 67.5	0.9 146	1.69 UNJ 11.2	46.1 2.05	386 23.6	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
T06H 0-2 inch Sediment (mg/kg) 1997	38.7 67.3 73.4	0.833 161	11.2 UNJ 15.6	m m m 47.2 3.16	533 28.4	T06F Image: Section of the section o

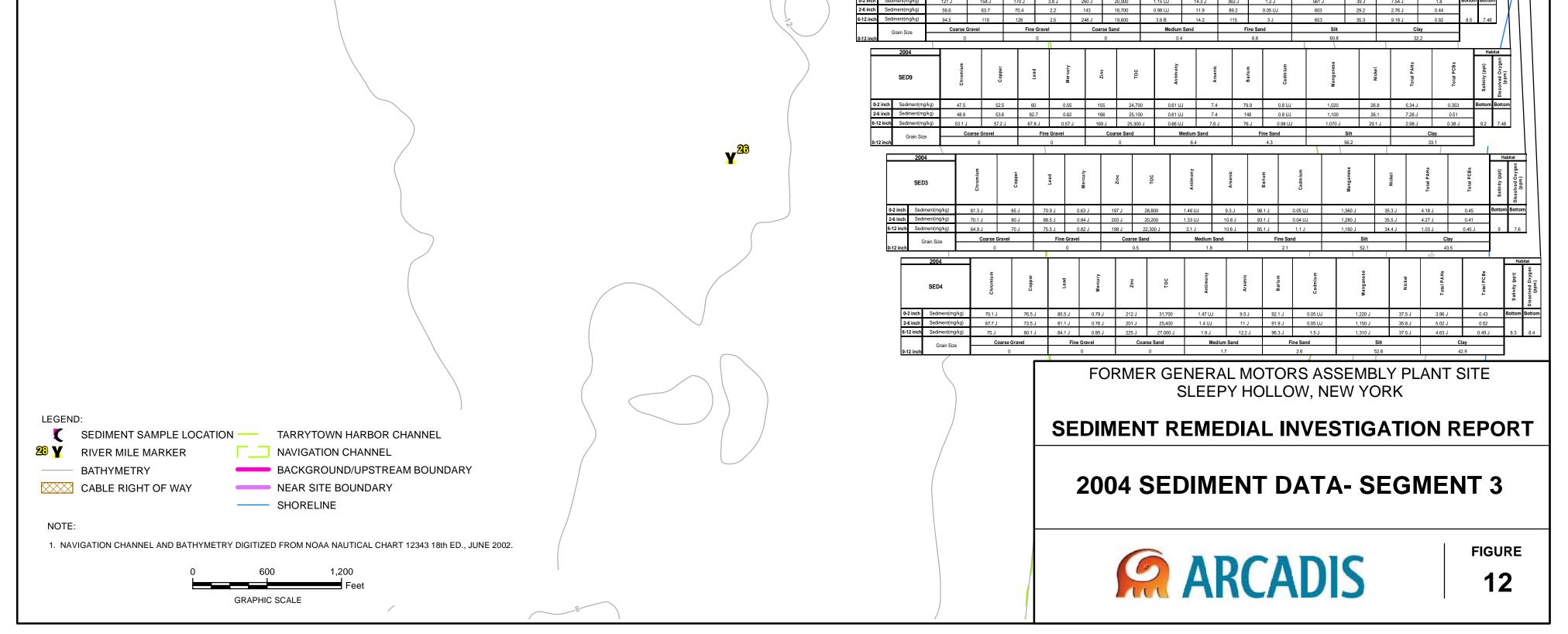
City: SYR Div/Group: SED GIS Created By: K.Sinsabaugh Last Saved By: jrapp Tarrytown (64462.0041) Q:\GeneralMotors\Tarrytown\RemedialInvestigation\mxd\Southern_East_1997_SampleLocations_2012.mxd 1/30/2012 8:20:44 AM


							pleLocations_						C		
	1997 T06E	Chromium	Copper	Lead	Mercury	Zinc	Antimony	Arsenic	Barium	Cadmium	Manganese	Nickel			
	inch Sediment (mg/kg)	56.9 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	58.3 J	67.8	0.692	173	16.8 UNJ 	7.17 0	55.5	3.61 E	1,030	33.9		C C OF-3	
0-2	T05E	Chromic 49.4	47.2 J	55.2	0.785	2 N 130	11.2 UNJ	Arseni	ariun	Cadamic Cadamic 2.51	Wangane 3337	9 22.5			
	1997 T05F	Chromium X X X X X X X X X X X X X X X X X X X	Copper	Lead	Mercury	Zinc	Antimony	Arsenic	Barium	Cadmium	Manganese	Nickel		OF-2	
0-2	T04F	45.5	69.3	80.5	1.1 <u> <u> </u> </u>	168	13 UNJ	12.7	47.8	3.12	439 ese esu ebu	28.4			
0-2	inch Sediment (mg/kg) 1997	ວົ 45.3	77.3	69.1 *NJ	≥ 1.36	149	₹ 11.2 UNJ	₹	44.1 *	ی 2.5	439	25	C C C		
0-2	T04G	Chromium Chromium 70.1	110	83.2 *NJ	Ainosaw Weicona 1.61	00 IZ 173	Auoumiture T1.3 UNJ	Atsenic 13.3	шліла Ванілі Ваніл Ванілі Ваніл Ванс Ваніл Ваніл Ваніл Ваніл Вана	Cadai S 2.77	Manganes. 086	^{аэ} хэ И 26.6			
	1997 T04E	Chromium	Copper	Lead	Mercury	Zinc	Antimony	Arsenic	Barium	Cadmium	Manganese	Nickel			
0-2	inch Sediment (mg/kg) 1997 T03E	41.1 Enjure	40.8 J	37.6 *NJ	0.694	102 2 I N	10.5 UNJ	3.88 Arsenic	114 * Barriu Ba	2.06	383 audanese	19.2			
0-2	inch Sediment (mg/kg) 1997	о 47 Е	58.7 J	55.3	1.48	126	1.91 UNJ	7.76	35.9	2.31	≥ 338	23.5	TCHUNE		
0-2	T03D	Chromiur 32.1	37.3 U	еа- 	0.359	92.4	1.72 UNJ	Arsenic 5.12	43.1	Cadmin O	wangane Mangane 455	18.4			
	1997 T03C	Chromium	Copper	Lead	Mercury	Zinc	Antimony	Arsenic	Barium	Cadmium	Manganese	Nickel	¢		
0-2	T02E	55.1 minimoury	67.2 J	62.9	0.712	153	2.23 UNJ	7.28 Arsenic	54 minime B	2.99 minimi	531 esee	28.1			
0-2	inch Sediment (mg/kg) 1997	53.3 E	61.7 J	61	0.571	139	2.08 UNJ	8.02	47.9	2.67 E	2 410	26.5			
0-2	T02D inch Sediment (mg/kg) 1997	51.5 [53.7]	60.4 J [64.7 J]	54.1 [58.6]	ັ້ອ ອັ	2 N 125 [135]	1.85 UNJ [1.9 UNJ]		42.2 [45]	2.39 [2.58]	aug Bu Wa 393 [552]	24.1 [25.2]			
	T02C	Chromium	Copper	Lead	Mercury	Zinc	Antimony	Arsenic	Barium	Cadmium	Manganese	Nickel		Nickel Manganese Vanganese	
0-2	T02B	26 mnjuuouu	24.9 U	30.2	0.475	77.5	1.61 UNJ	9.8	34.3 Barium	2.12	404	21.2 Nicke		Sediment (mg/kg) 24.6 18.6 U 16.1 0.241 U 69.5 1.61 UNJ 6.63 28.9 1.86 445 18.8	
0-2	inch Sediment (mg/kg)	49.9	95.4	87.2	1.75	172	⊲ 1.91 UNJ	15.2	57.4	3.1	≊ 384	30	0-2 ii	T03A Image: Sediment (mg/kg) 23.2 18.7 U 15.6 0.234 U 68 1.56 UNJ 6.51 27.6 1.93 480 19.7	
0-2	T03B	Chromium 27.5	17.3 U	Peag Teag	0.263 U	Zinc 69	Aromitive 1.75 UNJ	Arsenic 7.32	Eastin Basin 36.3	C add C add U add C add C a C add C add C a C a C a C a C a C a C a C a C	Manganese 538	тек 22.8		Mercury Manganese Nickel	
													02	Ch Sediment (mg/kg) 84.8 81.1 94.1 *NJ 0.934 191 14.7 UNJ 8.26 87.3 * 3.41 539 33.3 1997 1997 1997 1997 191 14.7 UNJ 8.26 87.3 * 3.41 539 33.3 1997	
					12									2 inch Sediment (mg/kg) 109 131 192 *NJ 2.47 262 14.5 UNJ 10.8 115 * 4.33 426 33.2	
					AR									T05D Image: Sediment (mg/kg) 58.3 60.8 J 81.4 1.08 173 16.9 UNJ 7.38 46.5 3.46 944 32	2.7
						/								Manganese Manganese 21 Cadmium 21 Cadmium 22 Cadmium 22 Cadmium 23 Cadmium 23 Cadmium 24 Cadmium 24 Cadmium 25 Cadmi	Nickel
				¥ ²³										O-2 inch Sediment (mg/kg) 60.8 60.6 J 69.7 0.833 183 16.7 UNJ 7.72 62.8 3.97 986 1997	35.6 19
														T05B b	28.4
	(/						Manganese Manganese	Nickel
														0-2 inch Sediment (mg/kg) 56 55.5 J 58.7 *NJ 0.931 153 16 UNJ 5.92 62.9 * 2.57 901	29.

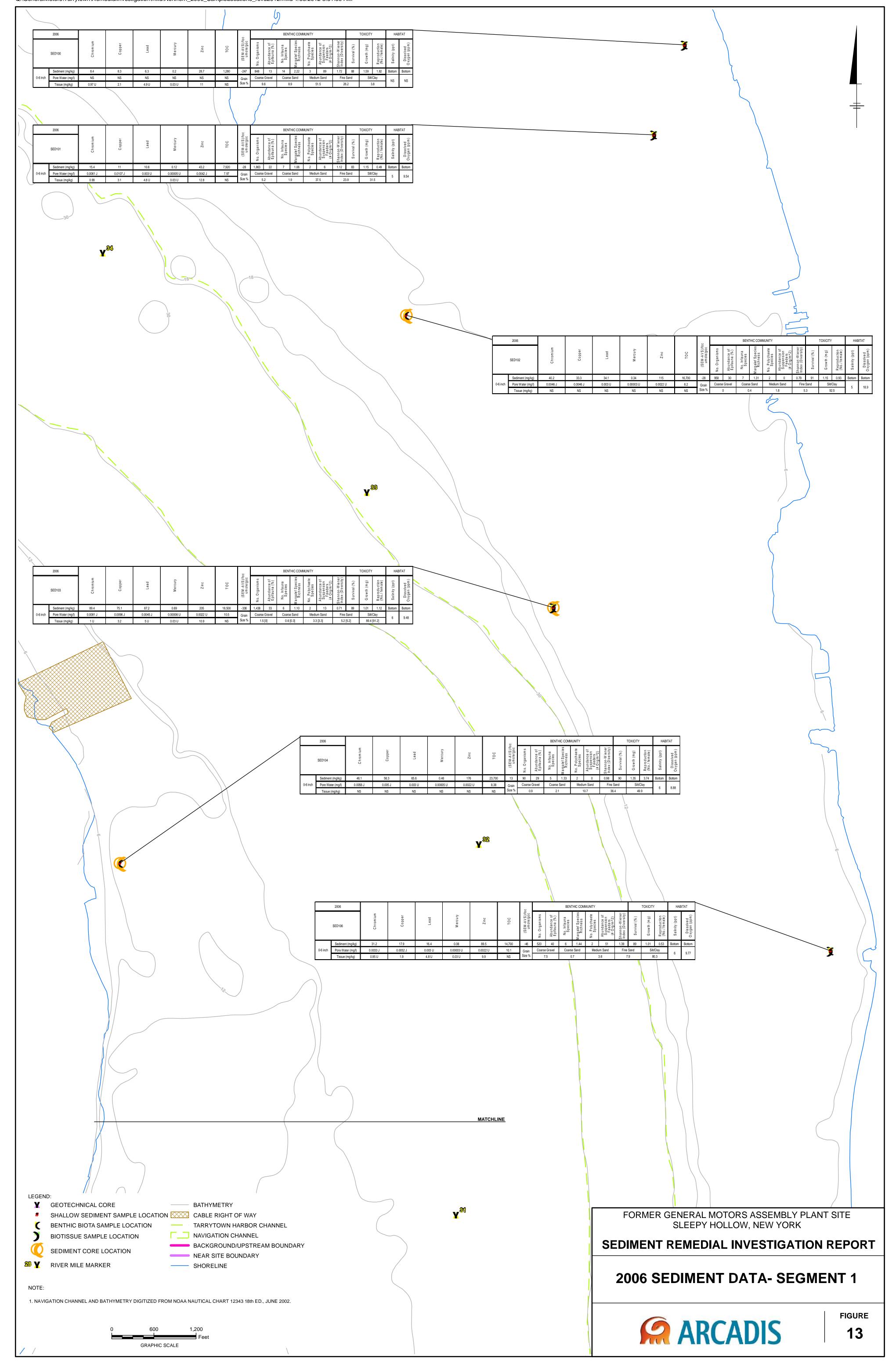


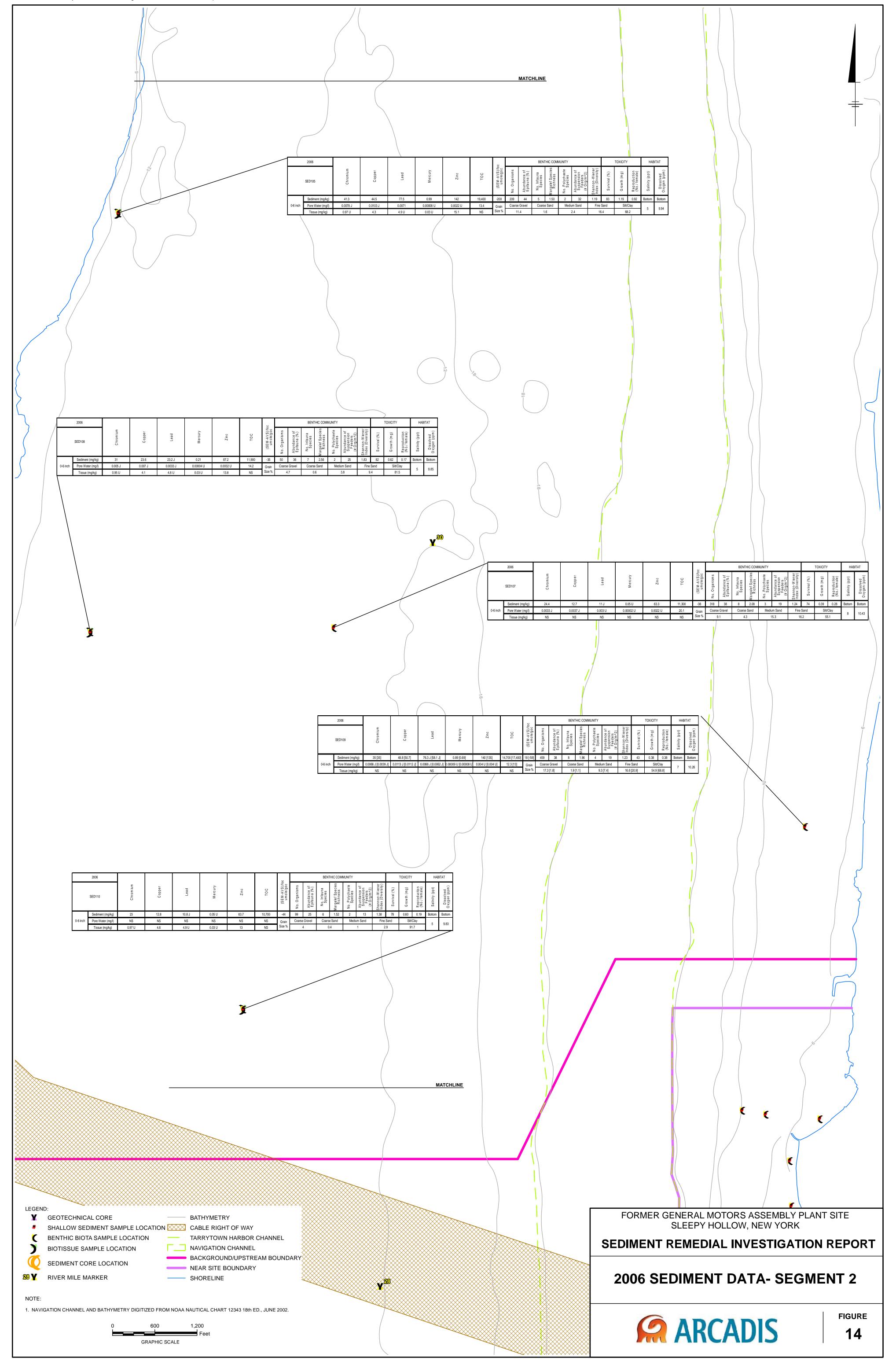

City: SYR Div/Group: SED GIS Created By: K.Sinsabaugh Last Saved By: jrapp Tarrytown (64462.0041) Q:\GeneralMotors\Tarrytown\RemedialInvestigation\mxd\Northern 2004 SampleLocations revd2012.mxd 1/30/2012 8:32:4:

City: SYR Div/Group: SED GIS Created By: K.Sinsabaugh Last Saved By: jrapp Tarrytown (64462.0041) Q:\GeneralMotors\Tarrytown\RemedialInvestigation\mxd\Central_2004_SampleLocations_revd2012.mxd 1/30/2012 8:35:42 AM



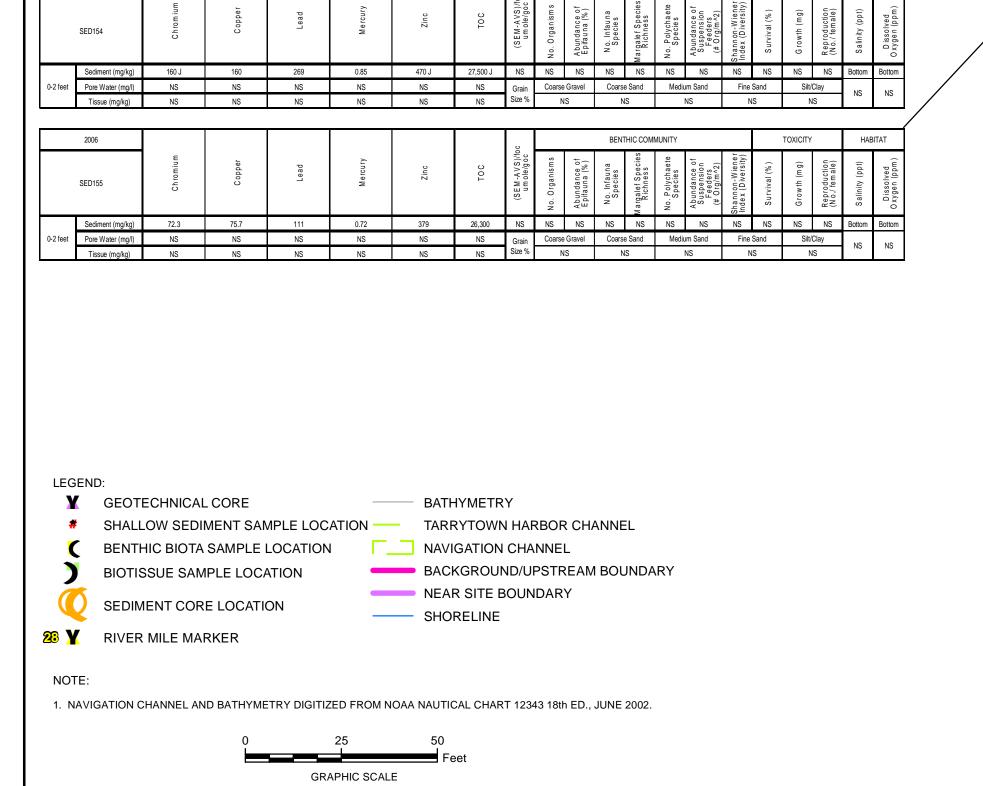
Z004 Managanas Antimining Total Antimining Total Antimining Antimining SED33 SED33 Seda Seda Seda Seda Seda Seda
Image: Sediment(mg/kg) I
0 0.2 2.3 4.1 18.7 50.4 24.3 0 0.2 2.3 4.1 18.7 50.4 24.3 2004 Image: Separation of the separa
O O I I I I O I
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
T T
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
SED29 No
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
SED28 \$\frac{5}{5}\$ \$\frac{5}\$
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
SED27 \$\vec{b}{9}\$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
SED26 Eg
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
SED25 § § § § § °
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
SED24 B

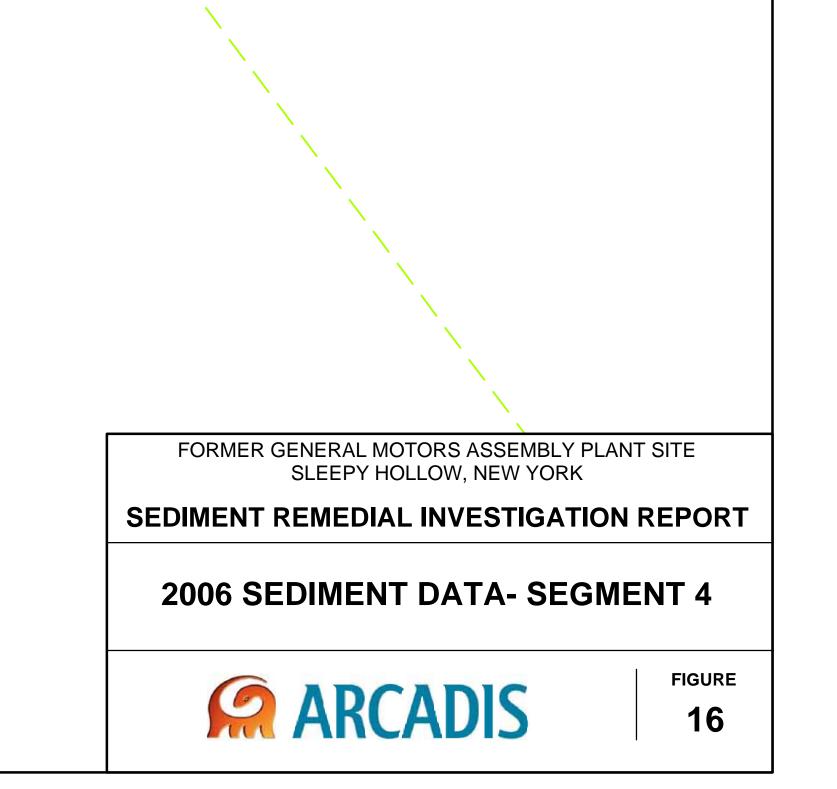


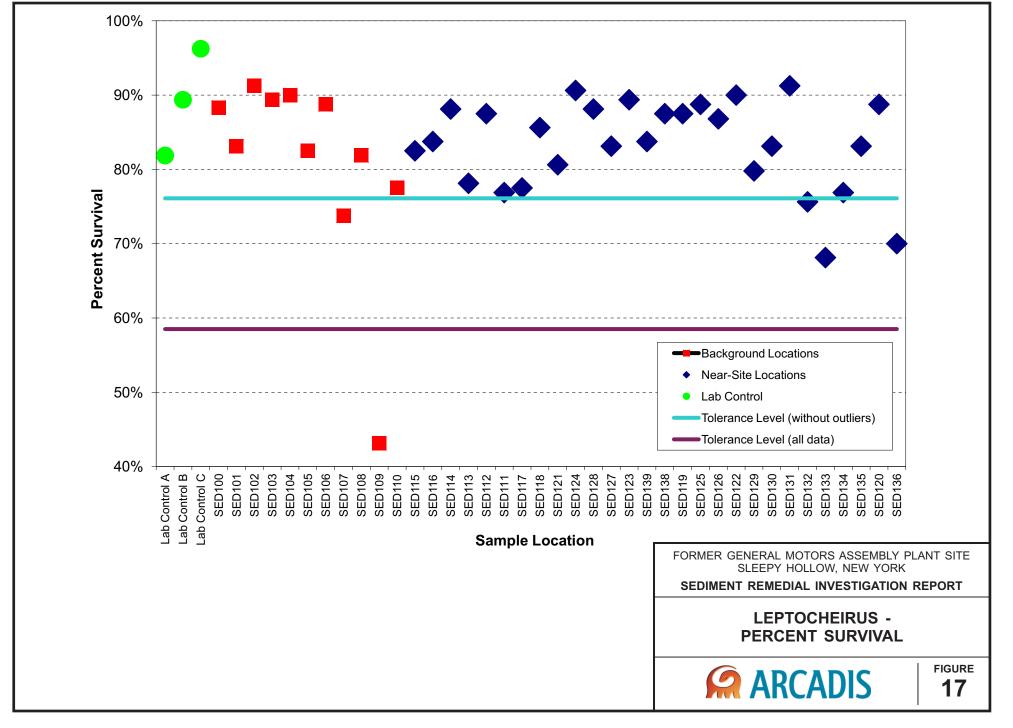

Orani Size O O O 2.7 4.8 58.3 34.2	Habitat		
Total PAHs Total PAHs Total PAHs	Total P CBs alinity (ppt) (ppm)) (ppm)		
2-6 inch Sediment(mg/kg) 29.9 56.4 56.2 0.61 125 J 16,900 0.9 UJ 14.6 54.4 0.23 UJ 570 23.3 6.83 J	00 10 0.12 U Bottom 0.11 U 0.11 U 0.12 U 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2		
6-12 inch Sediment(mg/kg) 46.2 114 89.1 1 212 J 24,600 1.1 B 23 83.9 0.83 J 802 30 10.4 J Grain Size Grain Size Coarse Gravel Fine Gravel Coarse Sand Medium Sand Fine Sand Sitt Clay 0-12 inch 0 0 0 0.42 12.3 56.5 30.8	0.12 U 9.7 6.7		
And a second a	Total PCBs Total PCBs (ppm) (ppm)		
2-6 inch Sediment(mg/kg) 71.8 J 82 J 87.3 J 0.94 J 193 J 26,300 J 1.28 UJ 9 J 107 J 0.04 UJ 829 J 32.6 J 5.29 J	0.81 J Bottom 1 J		
6-12 inch Sediment(mg/kg) 75.6 J 84 J 88.7 J 1.2 J 201 J 27,600 J 1.3 UJ 9.9 J 92.5 J 0.04 UJ 941 J 34.5 J 4.43 J Grain Size Coarse Gravel Fine Gravel Coarse Sand Medium Sand Fine Sand Sitt Clay 0-12 inch 0 0 0 1.1 7.1 62 29.8			
Total Parks Managaansse Manag	Total PCBs Total PCBs (ppm) 3 yage (ppm) 1 pm)		
2-6 inch Sediment(mg/kg) 87.6 114 126 2.6 212 20,800 1 UJ 11.9 99.7 0.94 J 581 31.3 2.2 J	00 00<		
6-12 inch Sediment(mg/kg) 98.5 172 145 2.1 262 20,500 1.15 UJ 20.1 113 0.44 UJ 596 34.9 6.08 Grain Size Grain Size O Image: Coarse Grave	0.73 8.1 8.47		
Total PAHs Total PAHs Total PAHs	Total PCBs olived Oxygen form) 5007 form)		Habitat
2-6 inch Sediment(mg/kg) 46.2 92.5 103 0.99 202 17,100 1.1 UJ 15.2 72.8 0.04 UJ 515 28.8 6.04 J	o single single	Lead Mercury Zinc TOC Antimony Barlum Cadmium	Manganese Nickel Inity (pp1) (ppm)) Sygen
6-12 inch Sediment(mg/kg) 34.9 72.3 67.8 0.69 163.1 18,000 1 B 15 57.2 0.72.3 447 24.6 9.52.3 Grain Size Grain Size Coarse Grave! Fine Grave! Coarse Sand Medium Sand Fine Sand Site Clay 0-12 inch	0.11 U 8.8 8.14 0-2 inch Sediment(mg/kg) 54.9 101 2-6 inch Sediment(mg/kg) 46.8 97 Utitud Sediment(mg/kg) 46.8 97	105 1.3 212 20,500 1.11 UJ 19.2 83.3 0.04 98.7 1.2 201 19,800 1.09 UJ 18.4 84.4 0.04	JJ 543 28.9 9.14 J 0.13 U
Total Paths Manganese	Section General (mg/kg) 42.8 107 General (mg/kg) 42.8 107 General (mg/kg) 42.8 107 General (mg/kg) General (mg/kg) 42.8 107 Grain Size Coarse Gravel 0 Output 0 0	89.4 1.6 221 J 21,500 1.6 B 17.8 70.2 0.75 Fine Gravel Coarse Sand Medium Sand Fine Sand 0.1 0.1 2 10.5	J 540 30.1 16.2 0.13 U 8.7 7.99 Silt Clay 53.8 33.5
2-6 inch Sediment(mg/kg) 41 103 92.5 1.4 209 25,800 1.01 UJ 16.4 67.5 0.03 UJ 509 30.7 12.6 J	0.12 U Bottom Bottom 0.12 U 9 8.18	Lead Mercury Zinc TOC Antimony Arsenic Barium	Cadmium Manganese Manganese Ilinity (ppt) Manganese Total P AHs Total P AHs Total P CBs
Grain Size Coarse Gravel Fine Gravel Coarse Sand Medium Sand Fine Sand Silt Clay 0-12 inch 0 0 0.1 0.7 13.7 57.8 27.7	0-2 inch Sediment(mg/kg) 102 14 2-6 inch Sediment(mg/kg) 51 95 6-12 inch Sediment(mg/kg) 40.2 88	3 100 1 198 19,000 0.6 UJ 17.2 76.8	
	6-12 inch Sediment(mg/kg) 40.2 88 Grain Size Coarse Gravel 0-12 inch 0 2004	5 79 0.9 178 J 17,300 1.2 B 15.1 68 Fine Gravel Coarse Sand Medium Sand Fine S 0 0.1 1.6 8.3	and Silt Clay
	SED7	Copper Lead Mercury Antimony Arsenic Barium	Cadmium Manganese Nickel Total PAHs Total PCBs alinity (ppt)
	0-2 inch Sediment(mg/kg) 81.7 2-6 inch Sediment(mg/kg) 106 6-12 inch Sediment(mg/kg) 92.9	113 114 1.8 214 23,500 0.55 UJ 10.9 178 148 161 2.3 268 17,000 0.64 J 14.3 114 142 132 3.2 256 21600 0.58 UJ 15.7 101	0.15 UJ 554 34.2 6.43 J 0.94 J
	0-12 inch Grain Size 2004 0 2004	rel Fine Gravel Coarse Sand Medium Sand	Site Clay 8.4 52.8 3.1
	SED1	Copper Lead An ercury An timony Arsemic	Barlum Cadmium Manganese Aunum Inity (ppt) (ppu) (ppu)
	0-2 inch Sediment(mg/kg) 67.9 2-6 inch Sediment(mg/kg) 79.2 110 inch Sediment(mg/kg) 79.2	95.3 102 2.4 194 17,000 1.03 UJ 11.3	125 0.63 J 609 32.7 4.04 J 1.2
	0-12 inch	131 176 2.7 252 J 23,000 2.7 B 15.4 urse Gravel Fine Gravel Coarse Sand Medium Sand 0 0 0 0.1 0.1 0	129 2 J 476 31.8 10.6 J 0.79 8.8 6.3 Fine Sand Silt Clay 1.8 67.4 30.6 67.4 30.6 67.4 30.6 67.4 67.4 30.6 67.4
	2004 SED8	Chromium Copper Lead Mercury TOC Antimony	Bariu Bariu Bariu Bariu Bariu Aangaanese Aangaanese Aangaanese Aangaanese Aangaanese Aangaanese (ppm) (ppm) (ppm) (ppm) (ppm)
	2-6 inch Sediment(mg/kg) 63.] 80 J [87.3 J] 0.8 UJ [0.88 UJ] 931 J [982 J] 30.9 J [32.5 J] 5.31 J [4.31 J] 0.81 J [0.71 J]
	0-12 inch Grain Size	9 [59.3 J] 70.7 [65.5 J] 80.2 [78 J] 0.86 [0.61 J] 189 [177 J] 21,500 [20,000 J] 0.64 UJ [0.65 UJ] 9.6 [8.9 J] Coarse Gravel Fine Gravel Coarse Sand Medium Sand 0 0 0.1 2.9	Fine Sand Silt Clay 5.9 53.9 37.2
	2004 SED2	Chromium Copper Lead Mercury TOC Antimony	Arsenic Arsenic Barium Manga ese Manga ese Mas
	0-2 inch Sediment(mg/kg)	121 J 158 J 170 J 3.8 J 260 J 20,000 1.15 UJ 14	.3.J 362.J 1.2.J 561.J 39.J 7.54.J 1.8 Bottom

City: SYR Div/Group: SED GIS Created By: K.Sinsabaugh Last Saved By: jrapp Tarrytown (64462.0041) Q:\GeneralMotors\Tarrytown\RemedialInvestigation\mxd\Northern_2006_SampleLocations_revd2012.mxd 1/30/2012 8:31:39 AM

City: SYR Div/Group: SED GIS Created By: K.Sinsabaugh Last Saved By: jrapp Tarrytown (64462.0041) Q:\GeneralMotors\Tarrytown\RemedialInvestigation\mxd\Central_2006_SampleLocations_revd2012.mxd 1/30/2012 8:34:48 AM

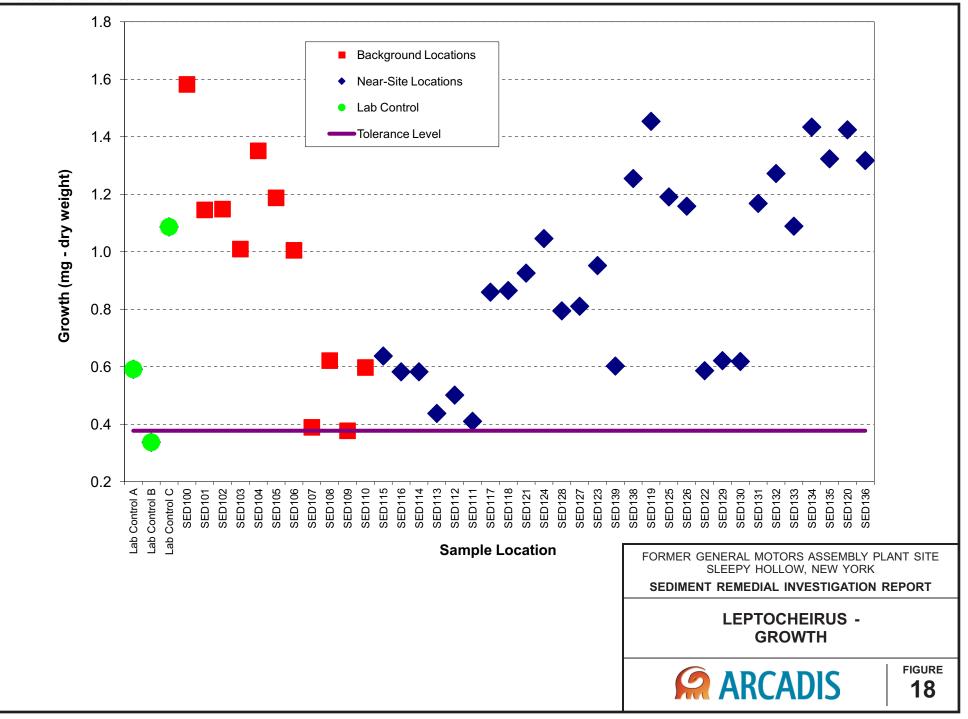

City: SYR Div/Group: SED GIS Created By: K.Sinsabaugh Last Saved By: jrapp Tarrytown (64462.0041) Q:\GeneralMotors\Tarrytown\RemedialInvestigation\mxd\Southern_2006_SampleLocations_revd2012.mxd 1/29/2012 1:56:16 PM

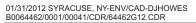

	unytown miwc	per		Licerty	inc	300_00	AVS)/foc			ce of sion rrs n^2) Miener Aliener	ТОХІСІТҮ (%) (б ш) :	rale) (ppt)	ppm) ppm) ppm) ppm) ppm) ppm,
SED111 0-6 inch 9/14/2006 Sediment (mg/kg) Pore Water (mg/l)	56 NS	65.6 NS	66.2 J NS	©.67 NS	Z 164 NS	21,600 NS	Grain	Coarse Gravel Coarse	e Sand Medium	n Sand Fine Sa		iy 8	Oxygen Oxygen Oxygen Oxygen Oxygen Margaleti Margaleti No. Orga Margaleti No. Orga Shannon- Spec Cowth Shannon- Initivitie Shannon- Initivitie Shannon- Oxygen Oxygen
Tissue (mg/kg) 0-6 inch 10/11/2006 Sediment (mg/kg) Tissue (mg/kg) Tissue (mg/kg) 2006 2006	NS 52 0.0084 J NS	NS 65.2 0.0061 J NS	NS 64.9 0.003 U NS	NS 0.58 0.00003 U NS	NS 168 0.0022 U NS	NS 18,700 13.7 NS	-31 Grain	NS N	NS NS e Sand Medium	NS NS n Sand Fine Sa	NS NS and Silt/Clay	NS Bottom	Bottom 0-6 inch 0-8 incl 0.0
SED114	Chromium	Copper	Lead	Mercury	Zinc	TOC	(SEM-AVS)/foc umole/goc	No. Organisms Abundance of Epifauna (%) No. Infauna Species	Margalef Species Richness No. Polychaete	Abundance of Suspension Feeders (# Org/m^2) Shannon-Wiener Index (Diversity)	Survival (%) Growth (mg)	Reproduction (No./female) Salinity (ppt)	Oxygen (ppm) Survival (%) Salinity (ppt) Oxygen (ppm) Oxygen (ppm)
0-6 inch Sediment (mg/kg) Pore Water (mg/l) Tissue (mg/kg) 2006	60.8 0.0071 J NS	28.4 0.0185 J NS	29.1 J 0.0077 J NS	0.27 0.00004 U NS	72.2 0.0022 U NS	10,400 7.54 NS	_	8.5 12	1.52 2 e Sand Medium 2.5 22. THIC COMMUNITY 22.	n Sand Fine Sa		iy 8	9.54 9.54 9.54 9.66 inch Pore Water (mg/l) 0.006 J 0.006 J 0.003 U 0.0001 U 0.0022 U 9.75 Grain Coarse Gravel Coarse Gravel Coarse Gravel Site/Clay 8 10.06 7 issue (mg/kg) NS NS NS NS NS NS NS NS 0 0 0 6.9 13.2 79.9 8 10.06
SED115 Sediment (mg/kg)	un Cyrowin 47.5	Copper	рв 65.7 J	Arnona Mercury 0.5	z ju Z 139	00 L 15,600	ස (SEM-AVS)/ umole/goo	Bit No. Organisms Comparisms Abundance of Epifauna (%) Point and a comparison No. Infauna (%) Species Species	251 Margalef Specie: Richness No. Polychaete Species	 Abundance of Suspension Suspension Feeders (# Org/m^2) (# Org/m^2) Shannon-Wiene Index (Diversity 	88 Survival (%) 990 Grow th (mg)	Reproduction Rould female) worked Salinity (ppt)	Disso Bottom
0-6 inch Pore Water (mg/l) Tissue (mg/kg) 2006	0.0086 J NS	0.0053 J NS	0.0041 J NS	0.00004 U NS	0.0022 U NS	12.6 NS	C.C.	1.1 3.	e Sand Medium .7 7.9 THIC COMMUNITY			- 9	
SED116 Sediment (mg/kg) 0-6 inch Pore Water (mg/l)	63.5 0.0091 J	77.6 0.0056 J	76.2 J 0.003 U	0.94 0.00003 U	E N 181 0.0022 U	00 L 16,700 12.6		sinegation of the second secon	e Sand Medium		84 0.58 (and Silt/Clay		Bottom
Tissue (mg/kg) 2006	NS Winimu Minimu	opper		ercury	Zinc		-AVS)/foc %	0.5 0.		nce of nce of less less (m ^2) (m ve rsity) 11	84.9 TOXICITY	uction (ppt) (ppt)	10 ITAT TRAT DE-3
SED120 0-6 inch Pore Water (mg/kg) Tissue (mg/kg)	56.3 0.0053 J 0.98 U	75 0.0171 J 2 U	77.9 0.003 U 4.9 U	≥ 1.1 0.00009 U 0.03 U	152 0.0022 U 8.9	10,900 14.4 NS	Grain	b. O o O. O N 55 25 Coarse Gravel Coarse NS 2.	A Sold Sold Sold Sold Sold Sold Sold Sold	n Sand Fine Sa		iy 6	Bottom 9.34
2006 SED117	C h rom iu m	Copper	Lead	Mercury	Zinc	TOC	SEM-AVS)/foc umole/goc	Organism s Organism s indance of fauna (%) bridauna A	alef Species ichness Polychaete Species	ndance of spension eeders Org/m^22	rvival (%) ToxicutA ToxicutA ToxicutA ToxicutA	roduction ./ female)	TAT (wdd) und (wdd) und (wd
0-6 inch Sediment (mg/kg) Pore Water (mg/l) Tissue (mg/kg)	36.1 0.0087 J NS	38.2 0.0059 J NS	129 J 0.0039 J NS	0.48 0.00007 U NS	121 0.0022 U NS	15,200 12.8 NS	Grain		.6 5.3		and Silt/Clay 5 45.3	iy 6	
2006 SED119	Chromium	Copper	Lead	Mercury	Zinc	TOC	(SEM-AVS)/foc um ole/go c	No. Organisms Abundance of Epifauna (%) No. Infauna Species	argalef Species Richness No. Polychaete Species	Abundance of Suspension Feeders (# Org/m^2) hannon-Wiener hannon-Wiener ndex (Diversity)	Survival (%) Growth (mg)	Reproduction (No./female) Salinity (ppt)	
0-6 inch Sediment (mg/kg) Pore Water (mg/l) Tissue (mg/kg) 2006	43.5 0.0054 J NS	43.2 0.0066 J NS	45.3 0.003 U NS	0.35 0.00004 U NS	122 0.0022 U NS	33,900 11.6 NS	Grain	53 25 6 Coarse Gravel Coarse 0 0.		n Sand Fine Sa		iy 6	Bottom 9.64 ITAT
SED122 Sediment (mg/kg)	Chromium 30.3	C ob ber C 30.5	29.8	Arnova W 0.22	2 in Z 2 93.6	00 L 14,200	(SEM-AVS)/fo um ole/goc	 No. Organisms Abundance of Epitauna (%) No. Infauna 	727 Margatef Species Richness Polychaete	Abundance of Suspension Feeders (# Org/m^2) (# Org/m^2) (# Org/m *2) (# Org/m *2)	66 Survival (%) 650 Growth (mg)	90 Reproduction (No./female) wotoge Salinity (ppt)	Dottom Date of the second
0-6 inch Pore Water (mg/kg) Tissue (mg/kg) 2006	0.0058 J NS	0.0073 J NS		0.00002 U NS	0.0022 U NS	11.8 NS	Grain	Coarse Gravel Coarse NS 0.	e Sand Medium	n Sand Fine Sa	and Silt/Clay	iy 6	9.41
SED118 Sediment (mg/kg)	Chromium 16	Jaddo O 12.2	19.5	Спорания W 0.04 U	эц Z 52.3	00 L 5,630	상 (SEM-AVS)/ umole/goo	% No. Organisms % Abundance of Epifauna (%) 4 No. Infauna (%) 4 Specielas	Nargalef Specie: δr Richness ω No. Polychaete Speciels Speciels	Abundance of Suspension Suspension (# Org/m^2) (# Org/m^2)	88 Survival (%) 880 Growth (mg)	250 Reproduction (No./female) wotog	Dygeoted (pm)
0-6 inch Pore Water (mg/l) Tissue (mg/kg) 2006	NS NS Winu	NS NS Jed	NS NS	NS SN Cruch	NS NS	NS NS		19.1 15	E Sand Medium 5.2 16. THIC COMMUNITY			6	
SED121 Sediment (mg/kg) 0-6 inch Pore Water (mg/l)	61.6 0.0062 J	59.9 0.0051 J	89 0.003 U	0.95 0.00003 U	186 0.0022 U	23,700 10.1			Margalef Sp Richnes No. Polych Speciec ececent		U U U U U U U U U U U U U U U U U U U		al djuag Kro Bottom 9.77
Tissue (mg/kg) 2006 SED123	0.95 U minumoutu	1.5 C o bber	4.8 U	Mercury	9.0 Zinc	TOC	M-AVS)/foc	J 70 [0] 0 ance of ance of fina (%) final (%) for the final	(0.6) 3.1 [2 4 2 b 6 c 1 e 8 5	ance of dension dension Wiener Diversity)	0.7] 86.6 [87.] TOXICITY (%) [] (%) [duction emale) ty (ppt) (pt)	
0-6 inch Pore Water (mg/kg) Tissue (mg/kg)	102 0.0056 J NS	135 0.0045 J NS	122 0.003 U NS	1.8 0.00004 U NS	269 0.0022 U NS	27,500 8.69 NS	-149 Grain	DO Ponetic O O 119 25 Coarse Gravel Coarse 0 O	2.30 3 e Sand Medium		and Silt/Clay	iy 10	signature for the second secon
2006 SED125	Chromium	Copper	Lead	Mercury	Zinc	TOC	SEM-AVS)/foc umole/goc	Organisms undance of ifauna (%) Species ag	Altinname Attinness Polychaete Species	undance of uspension Feeders Org/m^2) n on-Wiener x (Diversity)	urvival (%) AllDXOA	production o./female) alinity (ppt)	deu (bbm)
0-6 inch Sediment (mg/kg) Pore Water (mg/l) Tissue (mg/kg)	97.2 0.0114 NS	152 0.0082 J NS	130 0.003 U NS	1.2 0.00004 U NS	269 0.0027 J NS	27,700 14.7 NS	Grain	Coarse Gravel Coarse 0.4 1.	Image Image <th< td=""><td></td><td>and Silt/Clay 86.2</td><td>6</td><td>9.46</td></th<>		and Silt/Clay 86.2	6	9.46
2006 SED124	Chromium	Copper	Lead	Mercury	Zinc	TOC	(SEM-AVS)/foc umole/goc	No. Organisms Abundance of Epifauna (%) Species	A argalef Species A Richness No. Polychaete Species	Abundance of Suspension Feeders (# Org/m^2) Shannon-Wiener Index (Diversity)	Survival (%) Growth (mg)	Reproduction (No./female) Salinity (ppt)	Dygesolved Oxygen (ppm)
0-6 inch Sediment (mg/kg) Pore Water (mg/l) Tissue (mg/kg) 2006	62.2 0.0085 J 0.99 U	68.1 0.0049 J 2	77.5 0.003 U 5 U	0.68 0.00002 U 0.03 U	197 0.0022 U 8	29,500 14.9 NS	Grain	372 25 12 Coarse Gravel Coarse 0 0.	e Sand Medium		and Silt/Clay	iy 6	Bottom 9.69 ATTAT
SED127	Chromium	Copper	Lead	Mercury	2 ju 7 7	00 F	SEM-AVS)/foc umole/goc	 No. Organisms Abundance of Epifauna (%) No. Infauna 	Margalef Species Richness No. Polychaete Species	Abundance of Suspension Feeders (# Org/m^2) Shannon-Wiener Index (Diversity)	S Survival (%) Growth (mg)	Reproduction (No./female) Salinity (ppt)	Image: Second
0-6 inch Pore Water (mg/kg) Tissue (mg/kg) 2006	55.5 0.0063 J NS	65.9 0.0057 J NS	67.7 0.003 U NS	0.63 0.00003 U NS	174 0.0022 U NS	24,700 8.83 NS	Grain	Coarse Gravel Coarse 0 0	e Sand Medium	n Sand Fine Sa		y 9	Sediment (mg/kg) 83.8 116 116 2.6 207 19,400 -391 98 30 7 1.96 3 13 2.04 76 1.27 0.49 Bottom Bottom
SED129 Sediment (mg/kg) Draw Mater (mg/kg)	35.4	75.2	70 70	0.81	2 UZ 154	18,600			A Margalef Specie Richness P 157 P Volychaete	Abundance of Suspension Feeders (# Org/m^2) 01 Shannon-Wiene			Image: Construction of the point of the
0-6 inch Pore Water (mg/l) Tissue (mg/kg) 2006	0.0053 J 1.2 E	0.005 J 2.2	0.003 U 4.8 U	0.00004 U 0.03 U	0.0022 U 12.4	16.2 NS		Coarse Gravel Coarse NS 0. BENT s us (%) g s	.9 12 THIC COMMUNITY			5	9.64 ITAT TAT TAT T T T T T T T T T T T
SED130 Sediment (mg/kg) 0-6 inch Pore Water (mg/l)	110 0.0117	112 0.0188 J	151 0.0062 J	1.6 0.0001 U	Е Z65 0.0022 U	24,100 10.9	Grain	in BOL O. Organis Figure 10 0. Organis Figure 10 0. Organis Figure 10 0. Organis Figure 10 0. Organis Coarse Gravel No. Infaur Species	Margalet Spe Richness No. Polycha Species Pecies Pecies		and Silt/Clay	- 5	Bottom Bottom Solution Solution<
Tissue (mg/kg) 2006	1 U min woi	2 U Jadd	5 U pead	0.03 U	11.2 vu	ZN TOC	-AVS)/foc szg	NS 1				ction male) (ppt) (pt)	Set ITAT ⁶ / ₀ - 6 inch ¹ / ₀ /200 SetInta ⁴ ⁶ / ₀ - 7 ¹ / ₀ - 7
SED133	Chr	ů		Μe	2		(SEM-/ umo	No. Orgar Abundan Epifauna No. Infai	Aargalef Sper Richness No. Polychae Species	Abunda Susper Feedt (# Org/r Shannon-V Index (Div	Surviva Growth	Reproduc (No./fem Salinity (Normalize

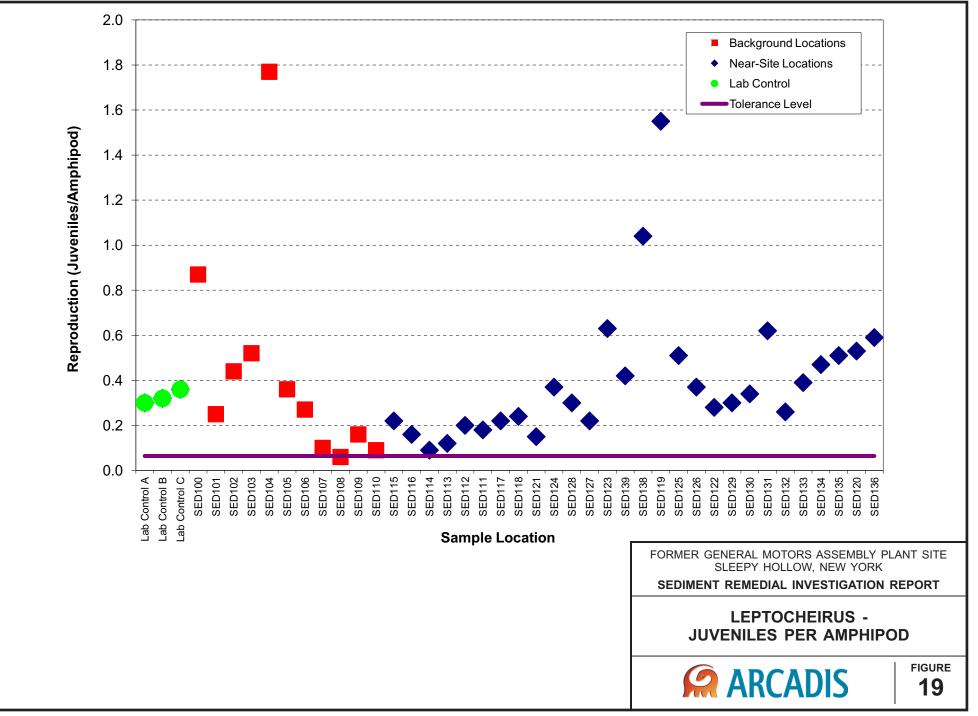

								(SE No. O Abun Epifa	Margal	Abun Sus Sus Fe (# O	Shanne Index Surv	G row Repro (No./	Salin	Diss O xyge			1.2	0-6 inch		57.7).0207	67.8 0.0195 J	68.3 0.0144 J	2.6 0.00033 U	155 0.0155 J	17,400 13.3	-109 N	S NS barse Gravel	NS NS Coarse Sand	NS NS Medium Sand	NS NS Fine Sand	NS NS Silt/Clay	Bottom Bottom	
	Sediment (mg/kg)	44	91.1	92.7	1	185	15,600	-205 160 25	9 2.17	4 <u>32</u>		1.09 0.84	Bottom E	Bottom				10/10/2006	()	0.95 U	2	4.8 U	0.03 U	12.6	NS	Size %	NS	1	6.5	18	73.2	NS NS	i /
0-6 in	h Pore Water (mg/l) Tissue (mg/kg)	0.0073 J	0.0064 J 3	0.003 U 5 U	0.00003 U 0.03 U	0.0022 U 11.2	13.3 NS	Grain Coarse Gravel Size % NS	Coarse Sand	Medium Sand 7	Fine Sand 13.3	Silt/Clay 78	5	10.93					2006									BENTHIC (COMMUNITY		TOXICITY	HABITA	
	2006		Ű		0.00 0	11.2		0	BENTHIC COMMUN	TY		TOXICITY	HABIT	AT						mium	pper	ead	rcury	inc	00	AVS)/foc le/goc	nisms	una es pecies	iss haete es ce of	rs 1^2) Viener ersity)	(%) (mg) ction	(ppt)	ppm)
		romium	opper	Lead	ercury	Zinc	TOC	-AVS)/fo ole/goc anisms nce of a (%)	auna iies Species ess	ies nce of nsion ers (m^2)	-Wiener versity) al (%)	(mg) uction male)	(ppt)	(ppm)					SED135	Chrc	ů		e M	Z	F	(SEM -	4o. Orgar Abundan	No. Infa Specié argalef S	Richne Jo. Polyci Specie Abundan	Feede (# Org/m hannon-V idex (Div	Survival Growth (Reprodue	Salinity (Oxygen (
	SED136	ch	C		≥			(SEM um No. Orga Abunda Epifaun	No. Inf Spec Margalef No. Dolv	Abunda Suspei Feed (# Org/	Shannon- Shannon- Index (Di Surviva	Growth Reprod (No./fe	Salinity	0 xygen				0-6 in	Sediment (mg/kg) ch Pore Water (mg/l)	65.8 0.0116	84.8 0.0109.1	85.6 0.0054 J	1.5 0.00015 U	160 0.0022 U	21,200	-88 Croin	128 20 Coarse Grave	8 1.8 Coarse San	35 4 d Medium Sai	0 1.81 nd Fine Sa	83 1.32 1.0 and Silt/Clay	9 Bottom B	ottom
	Sediment (mg/kg)	69.2	128	102	1.3	201	16,400	-278 171 46	7 2.33	3 19	1.77 70	1.32 1.28	Bottom B	Bottom	1	23		0.0 11	Tissue (mg/kg)	NS	NS	0.0034 3 NS	0.00013 0 NS	0.0022 0 NS	NS	Size %	NS	1.1	16.5	34.6	·	5 1	0.95
0-6 in	h Pore Water (mg/l)	0.0055 J	0.005 J	0.003 U	0.00002 U	0.0022 U	12.6	Grain Coarse Gravel	Coarse Sand	Medium Sand	Fine Sand	Silt/Clay	6	10.29					2006	8								BENTHIC	COMMUNITY		TOXICITY	HABITA	╒═┥╵╽
	Tissue (mg/kg)	NS	NS	NS	NS	NS	NS	Size % NS	1.1	8.6	16	70.8			/				2000	E)/foc	<i>s</i>	sa Sa		er X)			
╟─	2006	ro m iu m	opper	Lead	ercury	Zinc	T0C	-AVS)/foc ole/goc anism s nce of nce of a (%)	BENTHIC COMMUN	ies A nce of ers (m^22)	Wiener iversity) al (%)	ALIDIXOL (m g) male) male)	HABIT/ (bbt)	(ppm)					SED128	Chromiu	C oppe	Lead	Wercur	Zinc	TOC	(SEM-AVS umole/go	Vo. Organism Abundance o	No. Infauna Species argalef Speci	Richness No. Polychaet Species Abundance o	Feeders (# Org/m^2) hannon-Wien ndex (Diversit	Survival (%) Growth (mg)	(No./ Temale) Salinity (ppt)	Uissouveu Oxygen (ppm
	SED137	Сh	0		×			(SEM um o. Orga bunda	Spec Spec Richn	Spec bunda Suspe Feed # Org/	annon- ex (Di surviva	e prod	alin ity	Disso xygen		\bigcap			Sediment (mg/kg)	57.2	65	66.5	0.67	175	29,400	-270	339 36	 7 1.7	72 3	م ا 0 1.50	88 0.79 0.6	B Bottom B	ottom
	Sediment (mg/kg)	48.1	70.2	66	1.4	148	21,300	-216 130 33	8 226	₹ 25	171 NS	NS NS	Bottom F	O Bottom				0-6 in	Ch Pore Water (mg/l) Tissue (mg/kg)	0.01 J NS	0.0041 J NS	0.003 U NS	0.00002 U NS	0.0022 U NS	13.6 NS	Grain Size %	Coarse Grave	Coarse San	d Medium Sar 5.1	nd Fine Sa	,	6 f	0.67
0-6 in		0.0074 J	0.008 J	0.003 U	0.00007 U	0.0022 U	15.5	Grain Coarse Gravel	0	Medium Sand	Fine Sand	Silt/Clay	6	9.36	/			L	2006	No	145		110	113	NO				BENTHIC COMMUNI		тохі	עדוי	HABITAT
	Tissue (mg/kg)	1 U	2 U	5 U	0.03 U	9.4	NS	Size % NS	1	14.6	30.1	50.9							2000		ε	_		~)/foc) <u> </u>		 	->		
	2006	mium	oper	ad	cury	о с	T0C	V S)/foc e/goc ism s (%)	BENTHIC COMMUNI	s s s s s s s s s s s s s s s s s s s	/iener ersity) (%)	ALIDIXOL ale) Ale	(1 tad	AT	(SED139		Chromiu	Сорре	Lead	Mercur	Zinc	TOC	(SEM -AVS umole/go	pifauna (%)	Species galef Speci Richness	Species oundance o suspension Feeders # Org/m^2)	ex (Diversit urvival (%)	e production lo./ fem ale)	alinity (ppt) Dissolved vygen (ppm
	SED138	Chro	C	Γe	We We	Zir	TC	(SEM-/ umo lo. Organ Abundanc Epifauna	No. Infau Specie argalef Si Richne	Specie Abundanc Suspens Feede (# Org/m	dex (Dive Survival	Growth (Reproduc	Salinity (Dissolv Dxygen (r					Sediment (0 0/		-		0.05 U	62.9	11,600	-31 15		1 2.2 5	₹ ⁰⁷ © 0 108		0 0.00 1	sottom Bottom
	Sediment (mg/kg)	52.2	84.1	77.4	1	162	12,400	98 98 38	8 2.62	4 115	·····································	1.25 2.29	Bottom B	Bottom	\frown				0-6 inch Pore Water Tissue (m			.0055 J NS	0.003 U 0	.00004 U NS	0.0027 J NS	18.4 NS	Grain Co Size %	arse Gravel (0.7	Coarse Sand	Medium Sand 3.3	Fine Sand 9.4	Silt/Clay 85.9	6 10.19
0-6 in		0.0086 J	0.0081 J	0.0055 J	0.00005 U	0.0022 U	13.9	Grain Coarse Gravel		Medium Sand	Fine Sand	Silt/Clay	8	8.73					i issue (il	iging) [10							ľ	1				
	# SHAL		IMENT SA			CA		RY HT OF WAY /N HARBOR (3.4	15											9			SL	EEP	Ү НО	LLOW	, NEW	YORK	plant : F ION F		ORT
			A SAMPLE		'IN			N CHANNEL												/													
			RE LOCATI		-	BA	CKGRO	JND/UPSTRE	AM BOUNDA	RY												2	006	SED	IME	EN ⁻	ΓLO	DCA		N- S	EGN	IEN	Т3
{		R MILE MA	ARKER		_		ORELIN	BOUNDARY																						_			
	OTE: NAVIGATION	CHANNEL AI	ND BATHYME	TRY DIGITI	ZED FROM		ICAL CHAF	T 12343 18th ED	0., JUNE 2002.	/										18												FIGU	JRE
			0	60 GRAPH	0 HIC SCALE	1,200					8																{ (Al				1	5

2006 Image: SED126 Image: SED126 Image: Sediment (mg/kg) 148 111 1,520	Barbone Abbine Image: Section abbine <th></th>	
O-6 inch Pore Water (mg/l) NS NS NS Tissue (mg/kg) 1 U 4.4 5 U Sediment (mg/kg) 257 124 J 1,530 J 0-1 foot Pore Water (mg/l) NS NS NS Tissue (mg/kg) 0.5 NS NS NS	NSNSGrain Garse GravelCoarse GravelCoarse GravelCoarse GravelNeine SandFine SandSitt/ClayA15.3NSNSNSY2.9.450.22.6A3.030 J32,500NS	
2006 E	ATIBAH TOXIOT TOXIOT<	
Tissue (mg/kg) NS NS 2006 Image: SED140 Image: SED140	Zino Annological Solutions Salinity (ppti) Salinity (p	
Sediment (mg/kg) 437 J 72 8,420 1.5 feet Pore Water (mg/l) NS NS NS Tissue (mg/kg) NS NS NS NS	3,080 J 12,200 J NS NS <td></td>	
SED144 B <td>A A</td> <td></td>	A A	
2006 Image: SED141 Image: SED141 <td>Image: Construction Salinity Salinity<!--</td--><td></td></td>	Image: Construction Salinity Salinity </td <td></td>	
Pore Water (mg/l) NS NS NS Tissue (mg/kg) NS NS NS	806J 32,300J NS	
SED142 E S I 0-2 feet Sediment (mg/kg) 59.7 64.4 81.3 0-2 feet Pore Water (mg/l) NS NS NS Tissue (mg/kg) NS NS NS	Image: NS NS <td></td>	
2006	BENTHIC COMMUNITY TOXICITY HABITAT	
SED146 Image of the second s	All All <td></td>	
2006 E E E E	NS NS Grain Coarse Gravel Coarse Sand Medium Sand Fine Sand Stit/Clay	, , , , , , , , , , , , , , , , , , ,
Tissue (mg/kg) NS NS 2006 Image: SED149 Image: Sed of the	State	
Sediment (mg/kg) 95.1 [76] 72.3 [73.1] 132 [115] 0-2 feet Pore Water (mg/l) NS NS NS Tissue (mg/kg) NS NS NS NS 2006 2006 2006 2006 2006	Image: Second state Second	
SED151 Sediment (mg/kg) 57.5 61.1 74.3 0-2 feet Pore Water (mg/l) NS NS NS Tissue (mg/kg) NS NS NS	DU DU DU DU DU DU TOXICITY HABITAT 01	
2006 E <the< th=""> E <the< th=""> <the< th=""></the<></the<></the<>	NS NS<	
2006 E B	O O BENTHIC COMMUNITY TOXICITY HABITAT VI O O S S NS NS </td <td></td>	
Tissue (mg/kg) NS NS NS 2006	SN SN SN SN SN SN SN Image of the set of t	

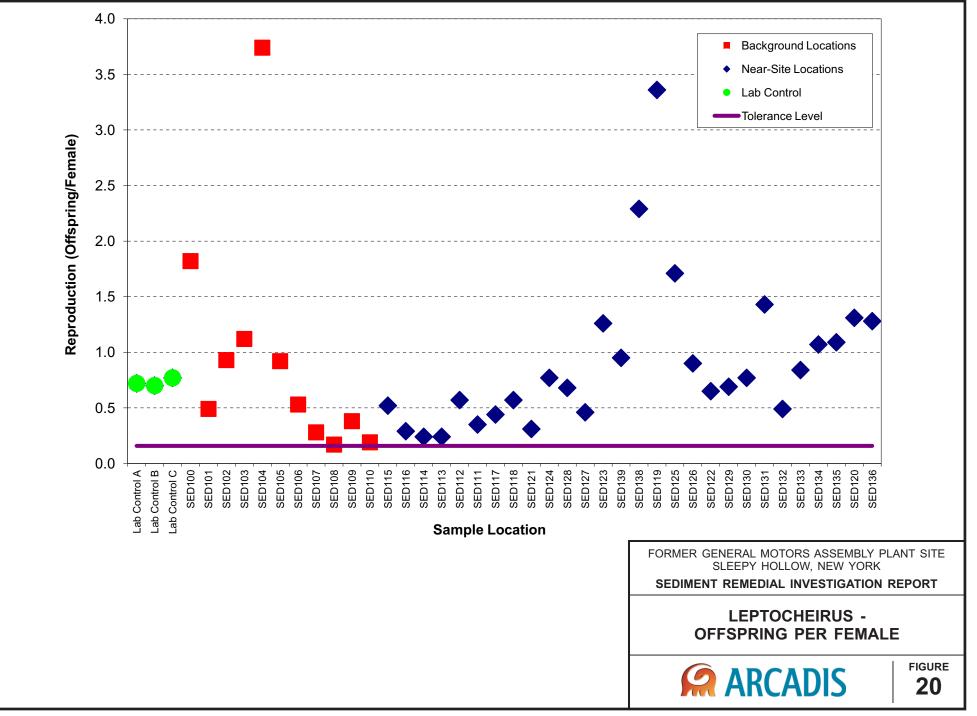
City: SYR Div/Group: SED GIS Created By: K.Sinsabaugh Last Saved By: jrapp Tarrytown (64462.0041) Q:\GeneralMotors\Tarrytown\RemedialInvestigation\mxd\Southern_Inset_Zoomin_2006_SampleLocations_revd2012.mxd 1/29/2012 2:07:36 PM

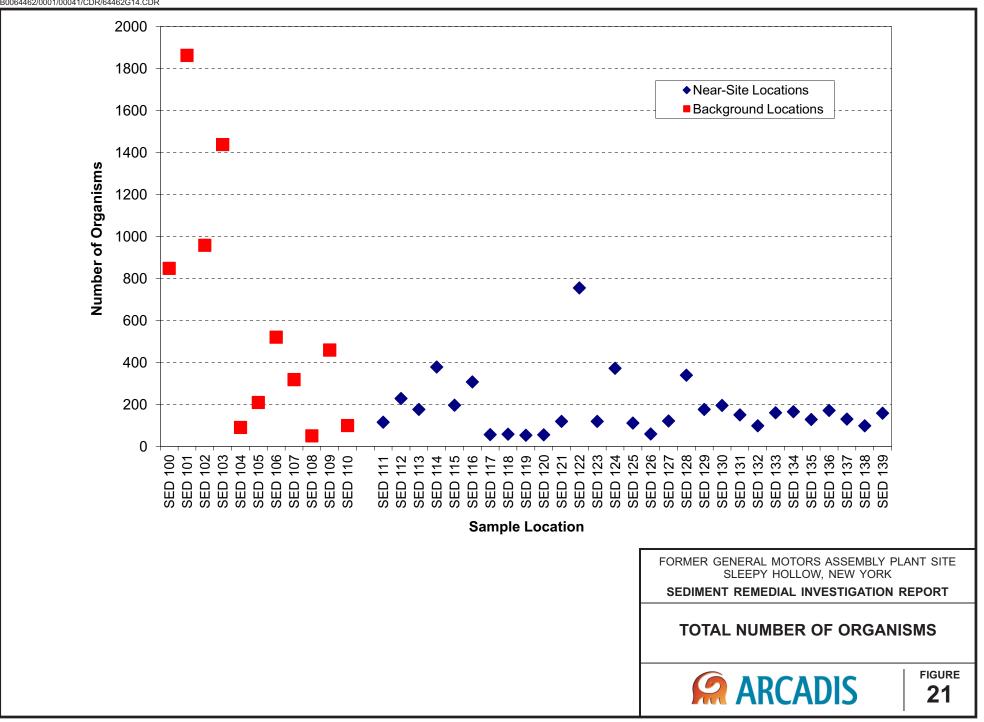


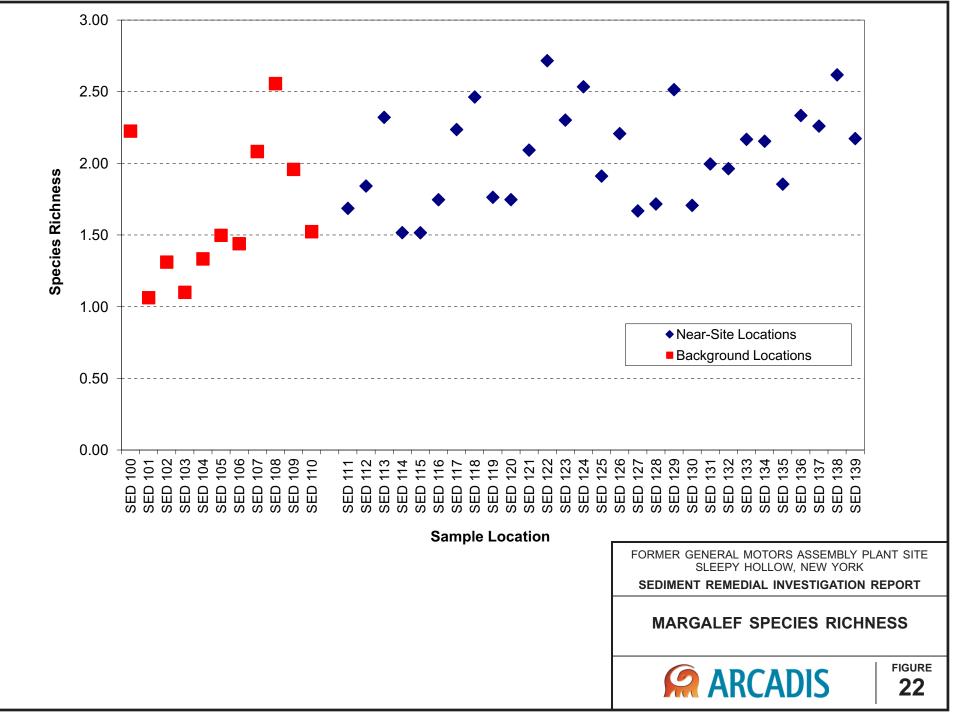


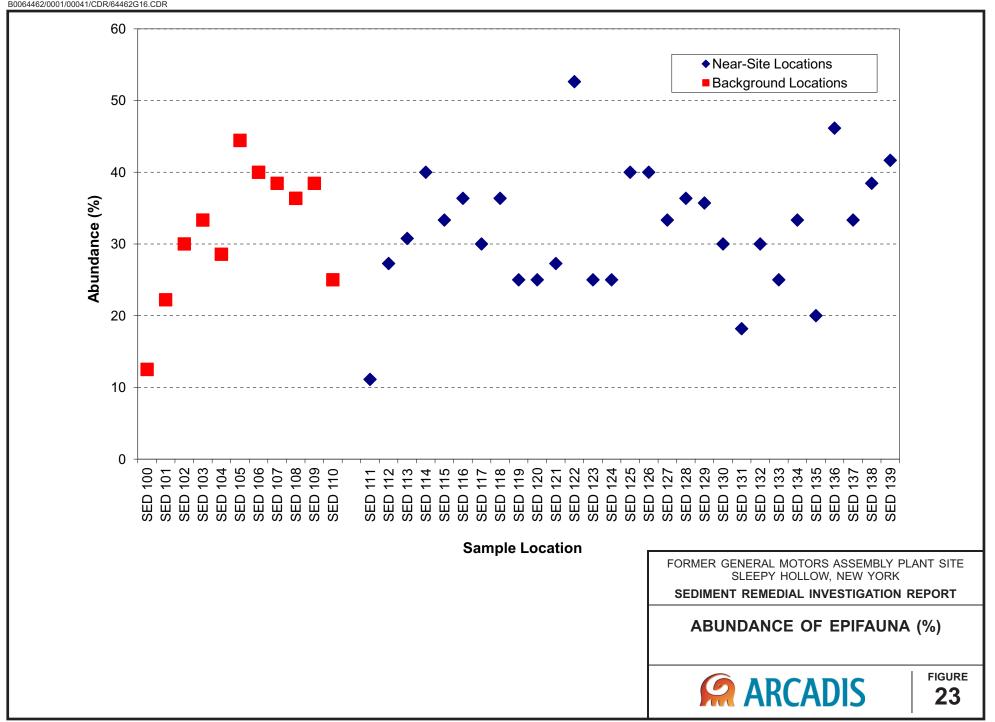


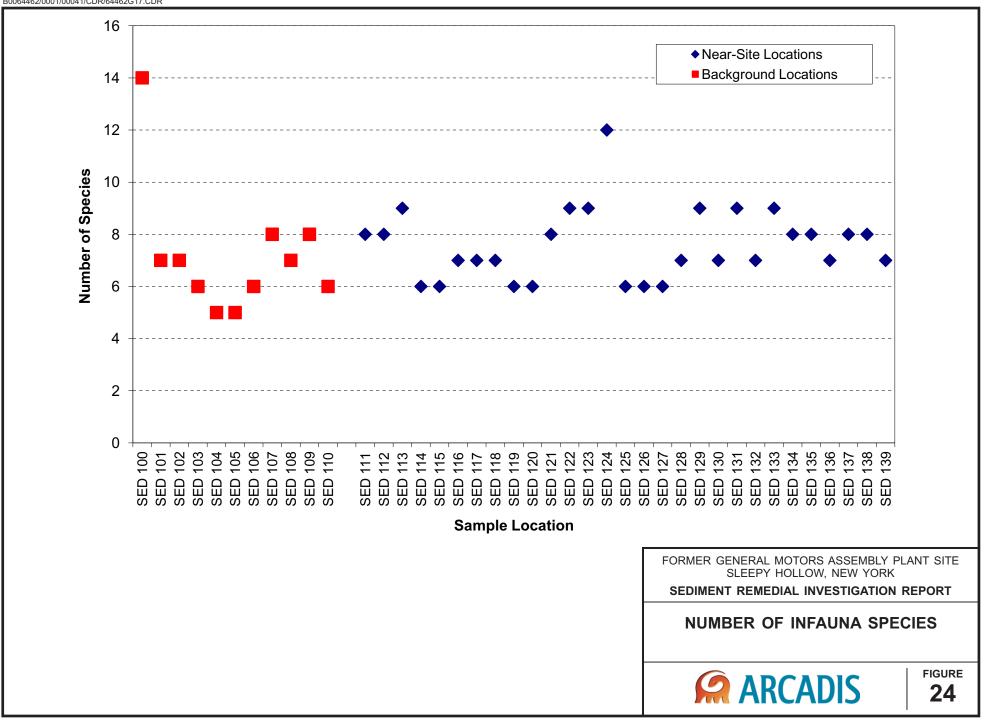

01/31/2012 SYRACUSE, NY-ENV/CAD-DJHOWES B0064462/0001/00041/CDR/64462G10.CDR

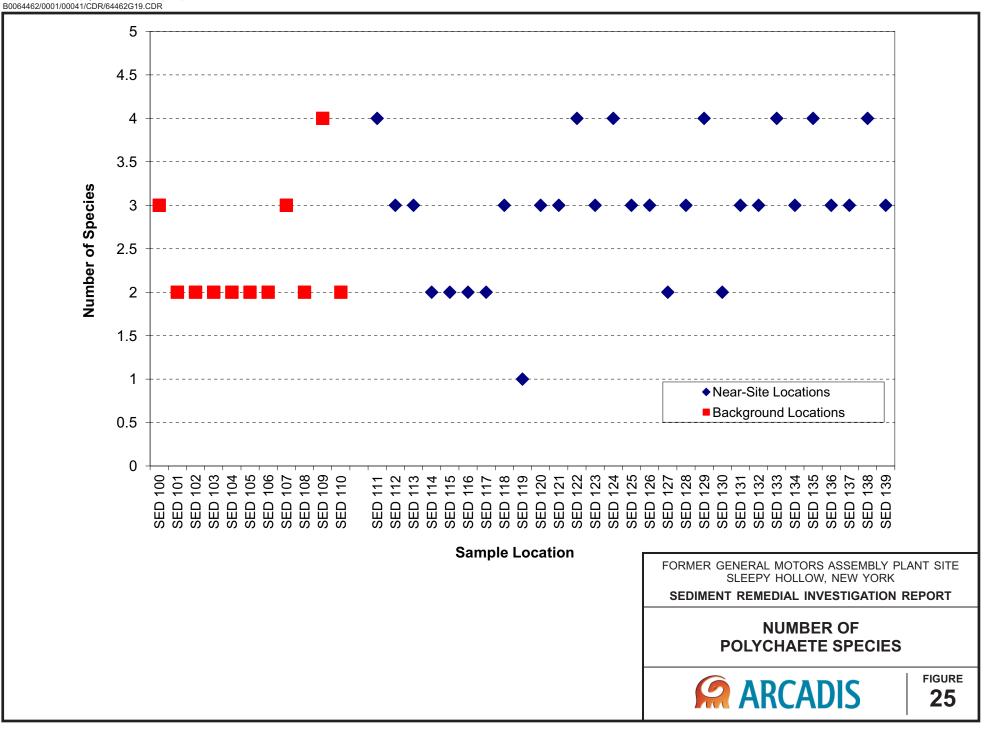




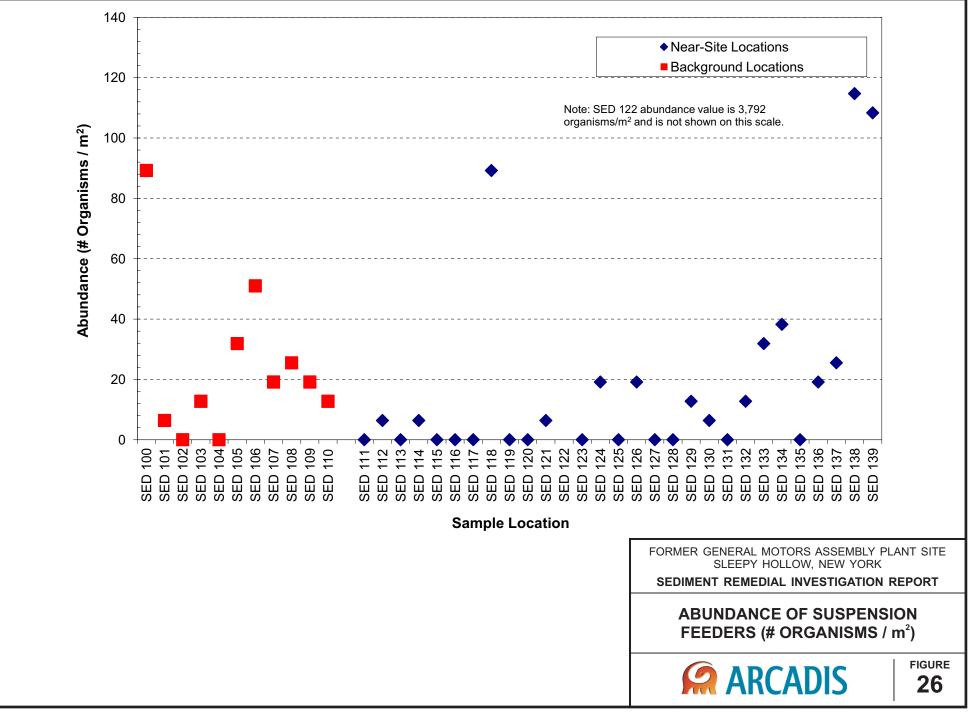


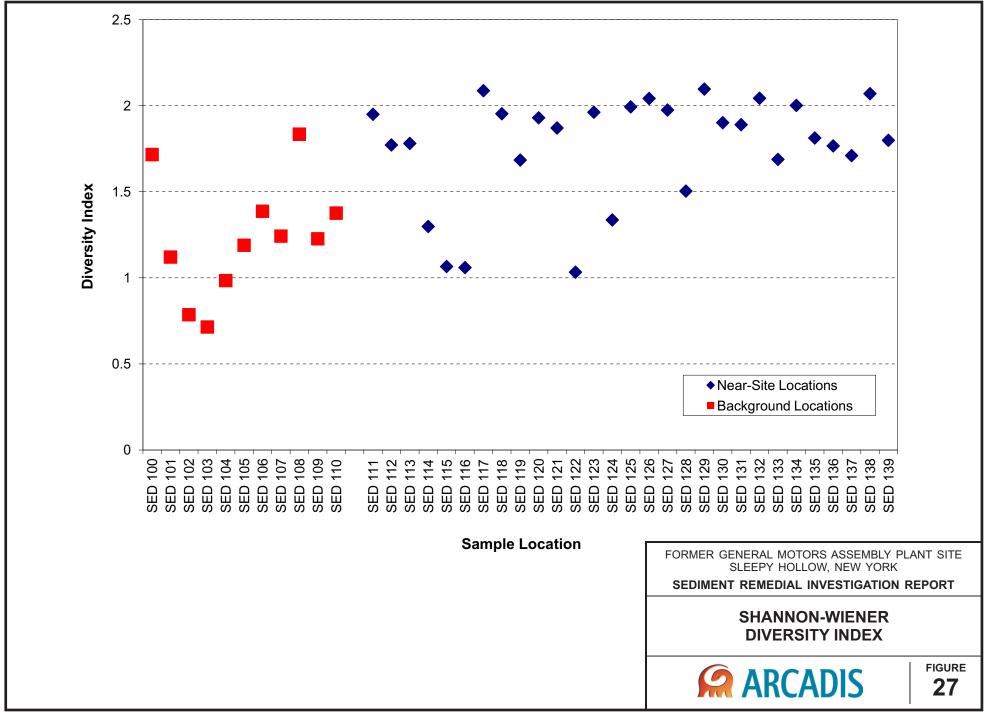



01/31/2012 SYRACUSE, NY-ENV/CAD-DJHOWES B0064462/0001/00041/CDR/64462G14.CDR

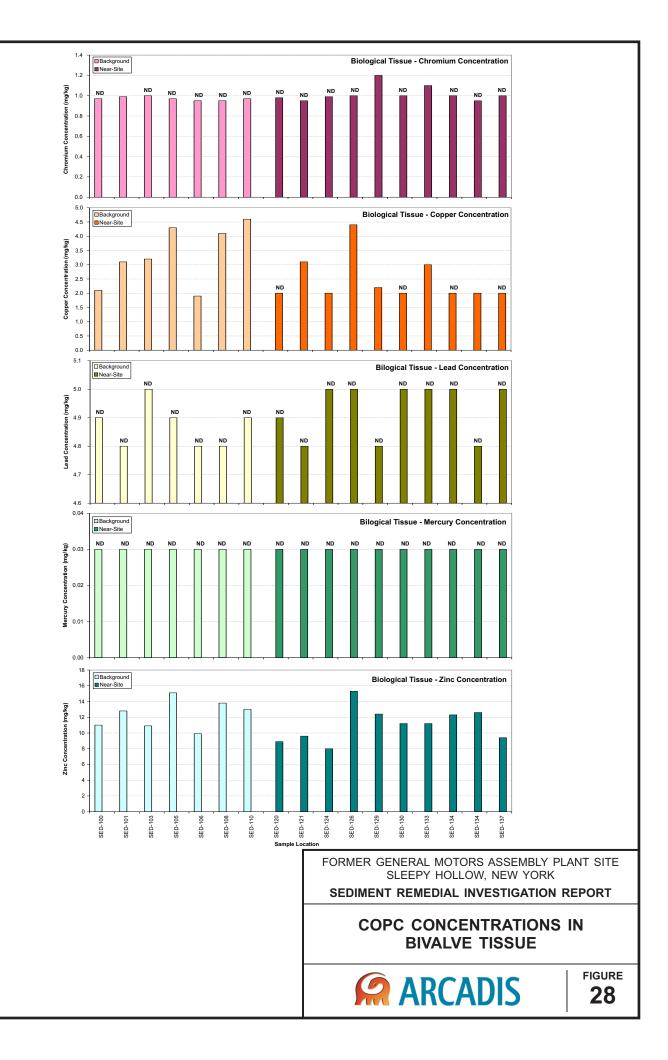


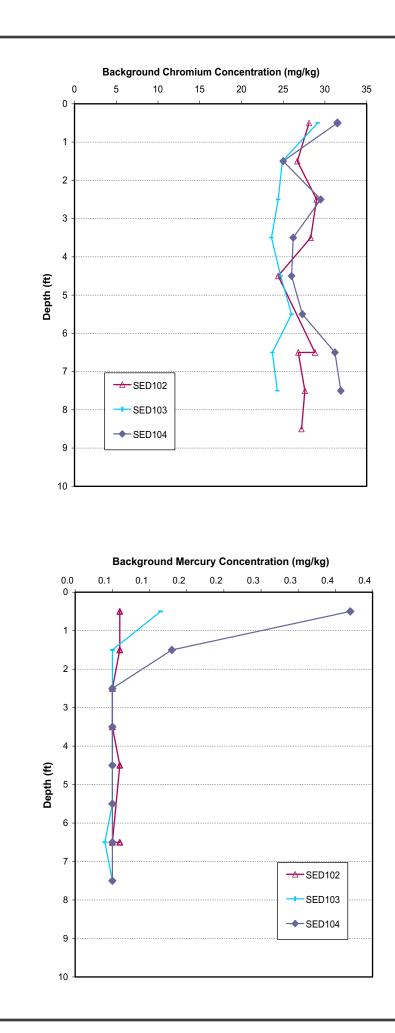
01/31/2012 SYRACUSE, NY-ENV/CAD-DJHOWES B0064462/0001/00041/CDR/64462G16.CDR

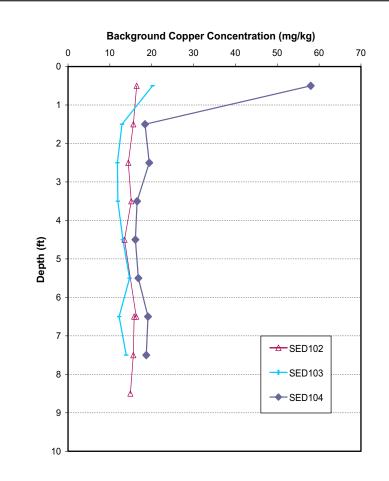


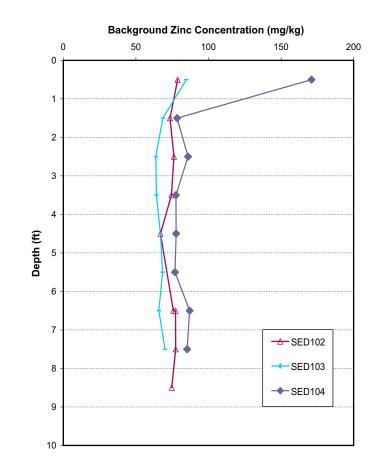

01/31/2012 SYRACUSE, NY-ENV/CAD-DJHOWES B0064462/0001/00041/CDR/64462G17.CDR

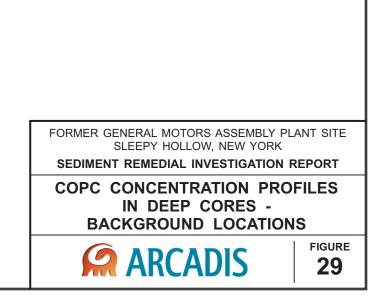
02/01/2012 SYRACUSE, NY-ENV/CAD-DJHOWES B0064462/0001/00041/CDR/64462G19.CDR

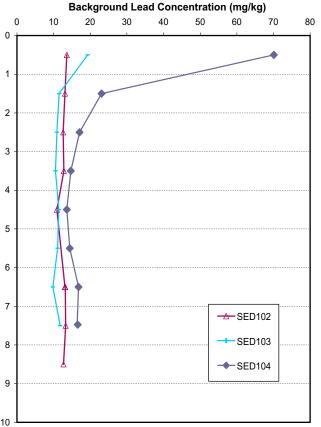


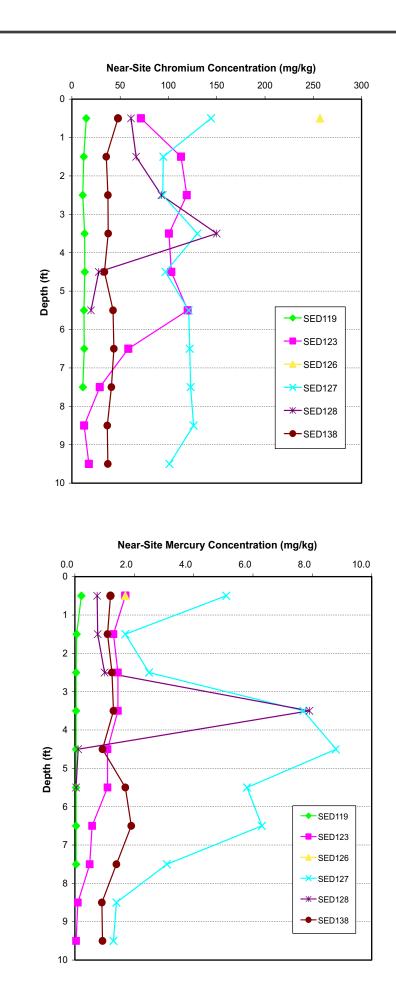


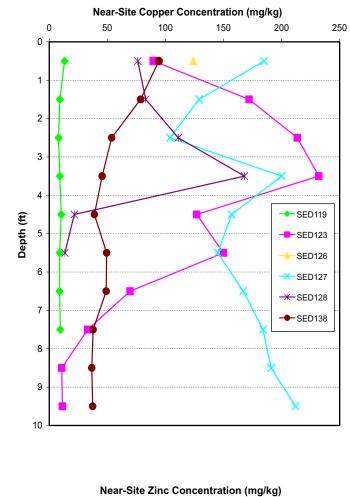


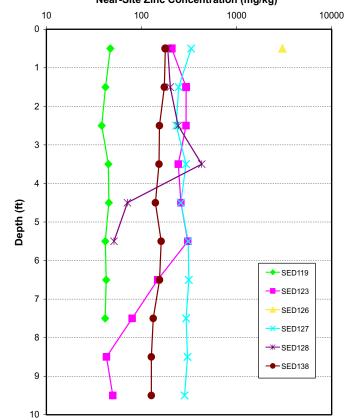

02/01/2012 SYRACUSE, NY-ENV/CAD-DJHOWES B0064462/0001/00041/CDR/64462G20.CDR

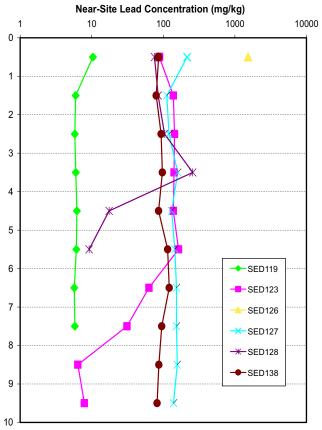


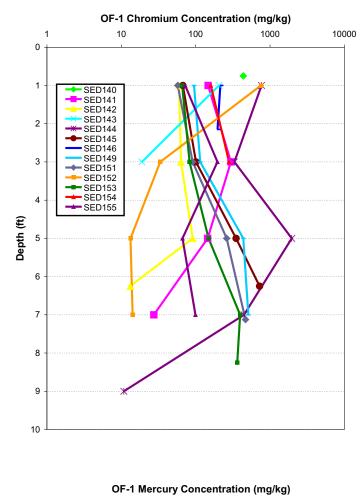


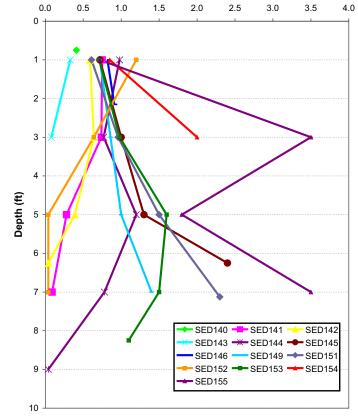


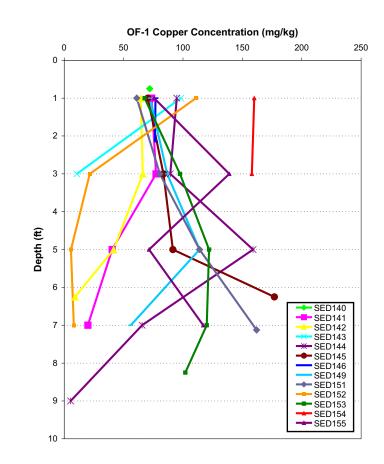

01/30/2012 SYRACUSE, NY-ENV/CAD-DJHOWES B0064462/0001/00041/CDR/64462605.CDR


Depth (ft)

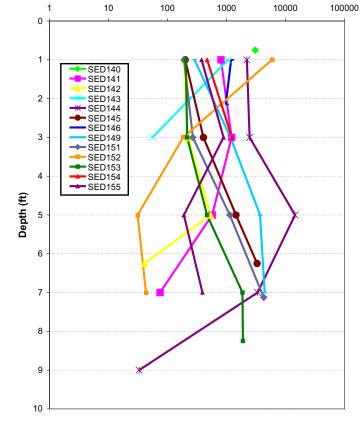





COPC CONCENTRATION PROFILES IN DEEP CORES - NEAR-SITE LOCATIONS


SEDIMENT REMEDIAL INVESTIGATION REPORT

FORMER GENERAL MOTORS ASSEMBLY PLANT SITE SLEEPY HOLLOW, NEW YORK



OF-1 Zinc Concentration (mg/kg)

01/30/2012 SYRACUSE, NY-ENV/CAD-DJHOWES B0064462/0001/00041/CDR/64462G07.CDR

Depth (ft)

0 -

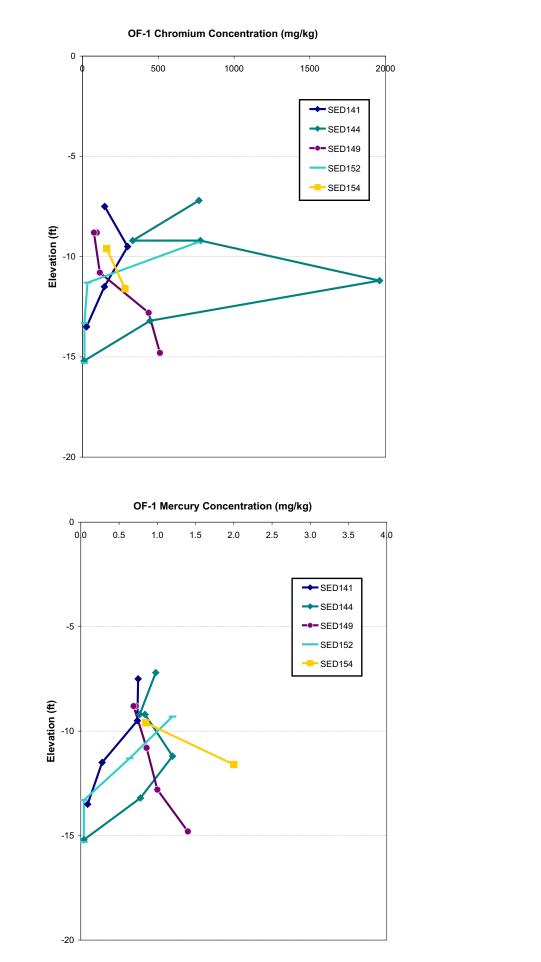
2

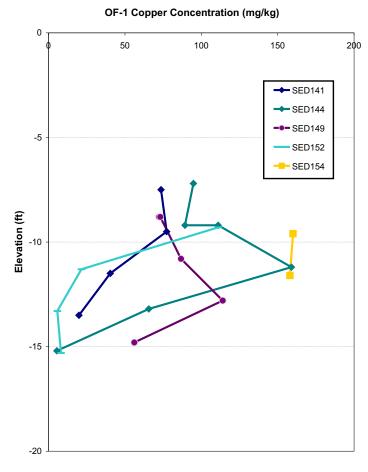
3

4

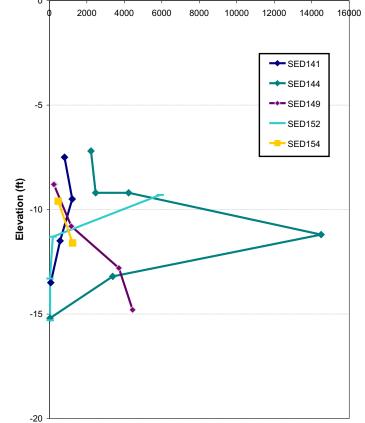
10





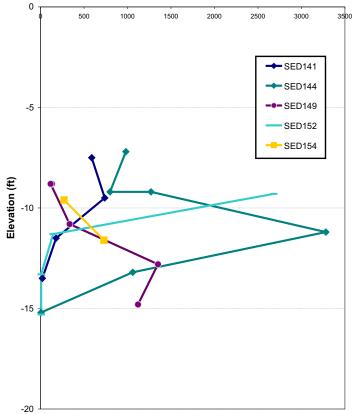

COPC CONCENTRATION PROFILES IN DEEP CORES - OF-1 GRID

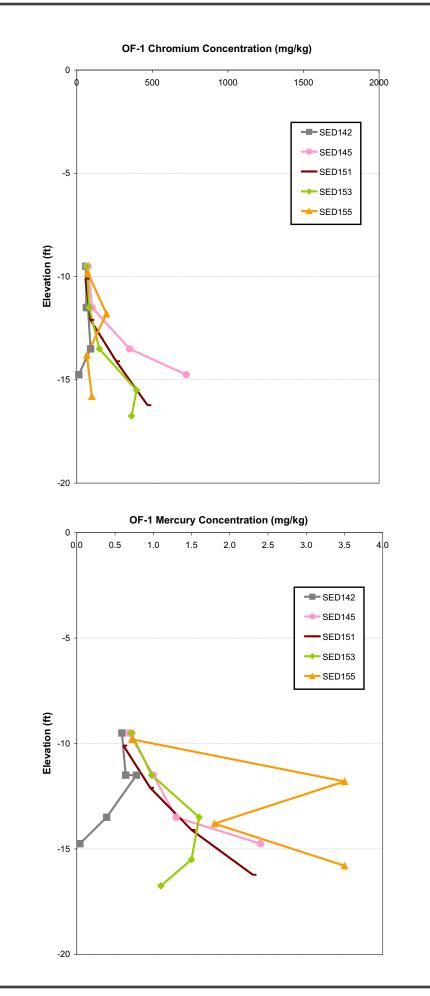
SEEPT HOLLOW, NEW YORK

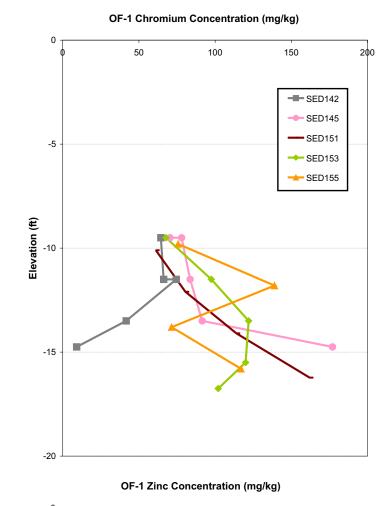

FORMER GENERAL MOTORS ASSEMBLY PLANT SITE SLEEPY HOLLOW, NEW YORK

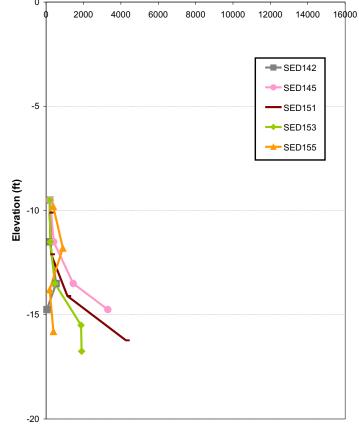
OF-1 Zinc Concentration (mg/kg)

01/30/2012 SYRACUSE, NY-ENV/CAD-DJHOWES B0064462/0001/00041/CDR/64462G08.CDR

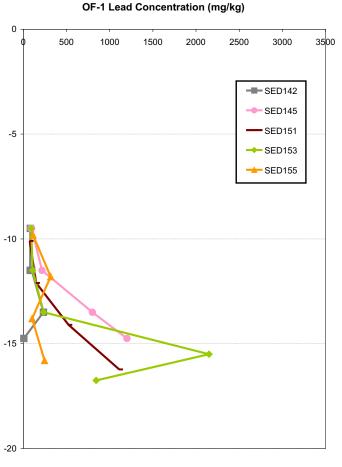



COPC CONCENTRATION PROFILES BY ELEVATION - OF-1 CROSS SECTION AA'


SEDIMENT REMEDIAL INVESTIGATION REPORT


FORMER GENERAL MOTORS ASSEMBLY PLANT SITE SLEEPY HOLLOW, NEW YORK

OF-1 Lead Concentration (mg/kg)



COPC CONCENTRATION PROFILES BY ELEVATION - OF-1 CROSS SECTION BB'

SEDIMENT REMEDIAL INVESTIGATION REPORT

FORMER GENERAL MOTORS ASSEMBLY PLANT SITE SLEEPY HOLLOW, NEW YORK

ARCADIS

Appendix A

Sampling logs 2004

Station SED L n 7-7-04

to the second

Sample Type Sedment Sample Number SED 1

Water Depth: 1. 65 Milers	Gear Deployment I	Time: <u>10055</u>
GPS Coord.: 665 309:1 818617.1		Penetration depth: - orthy 1/2 tripped
Water Depth: 1.65	Gear Deployment 2	Time: /006
GPS Coord: 665309.1 818617.1		Penetration depth: only 1/2 tripped
Water Depth: Sauce	Gear Deployment 3	Time: 10:10
GPS Coord .: Same		Penetration depth: only 1/2 the peal
Water Depth: Sauce	Gear Deployment 4	Time: 10:22
GPS Coord .: Same		Penetration depth: 11 uncles
Water Depth:	Gear Deployment 5	Time: 10:50
GPS Coord.: GANE		Penetration depth: 15 uches

(all 1) Box Corer 2) Box Corer 3) Box Corer

VOTES

4) Piston Cour 5

/ater Quality Readings:			
Feet Below Surface Water: Observations	- None MyL		********
emp. (°C) <u>24.80</u>	DO THE RMK (. 25	TDS (g/L) 9.2	
onductivity 1.49	Turbidity (NTU) 35-39	ORP (mV) 128	
н <u>7.4</u>	Salinity (%) 0.87		
			1-70+014214+61
Feet Above Sediment Surface: Observatio	ns: None malt		
emp. (°C) <u>24. 7</u>	DO CELET RML 6.3 gtt RMK	TDS (g/L) 9.3	
onductivity 1.5/ S/m	Turbidity (NTU) 49-53	ORP (mV) <u>134</u>	
H 7.3	Salinity (%) 0.88		

istation ED2		Sample Type Schingent
Water Depth: 1.85 meters GPS Coord.: 665 463.5 818	Gear Deployment 1	Time: 1130 Penetration depth: 14.75 inclus
Water Depth: Same GPS Coord.: Same	Gear Deployment 2	Time: 1140 Penetration depth: 11.5 wickes
Water Depth: GPS Coord.:	Gear Deployment 3	Time: Penetration depth:
Water Depth: GPS Coord.:	Gear Deployment 4	Time: Penetration depth:
Water Depth: GPS Coord.:	Gear Deployment 5	Time: Penetration depth:
anta D+2) · Pisto	1 Conel	
Water Quality Readings:		
Conductivity 1.40	$\frac{V_{ml}}{V_{ml}} = \frac{V_{ml}}{V_{ml}} = V_$	TDS (g/L) 8.7 ORP (mV) 144

2 Feet Above Sediment Surface: Observations:	None mill	
Temp. (°C) 25.38	DO (mg/t)g/c RMK-7.48	TDS (g/L) 9,
Conductivity 1.47	Turbidity (NTU) 18-2/	ORP (mV) 154
рн 7.4	Salinity (%) 0.85	

1

(O FE)

Ş

Section Sectio

Sample Type Sectinent unple Number 🛛 😪 D

Gear Deployment 1 1310 3.45M Water Depth: Time: 665619.3 818934-8 Penetration depth: * 10 Sample JPS Coord.: Gear Deployment 2 3.45m Same 1314 Water Depth: Time: ´ε. no sample Same GPS Coord .: Penetration depth: Gear Deployment 3 13:1 Sance Water Depth: 🛀 Time: Same GPS Coord .: Penetration depth: Gear Deployment 4 (3:28)Same Water Depth: Time: 18 in James Penetration depth: GPS Coord.: Gear Deployment 5 Water Depth: Time: GPS Coord.: Penetration depth:

in i) fiston Coles

7-17-04

N.S.

3+4 Piston Cour

	n is good is isotal in anno 2 door is ideal is anno 2 door is naise is anno 1 door is anno 1 door is i	1999 I MART I	
Water Quality Readings:		•	
<u></u>	v _i		
2 Feet Below Surface Water: Observations -	None		
Temp. (°C) 25.67	DO (met) 9/ 7.50	TDS (g/L) 8.9	
Conductivity 1.44	Turbidity (NTU) 32	ORP (mV) 6	
рн <u>7.53</u>	Salinity (%) 0.83		
2 Feet Above Sediment Surface: Observations:	None roll RMK	·	
Temp. (°C) <u>25.05</u>	DO Constagte 7.60	TDS (g/L) 9.6	
Conductivity 1.55	Turbidity (NTU) 32	ORP (mV) - 97	
рн <u>7.29</u>	Salinity (%) 0.90		
<u> </u>	X		

- A1

station 2 04 Sample Type Sedimics 07-07-04 Gear Deployment 1 14:20 4.9 M Water Depth: Time: GPS Coord.: 465759.7 819084.8 13.5 inches Penetration depth: Gear Deployment 2 Same 1427 Water Depth: Time: 15 inches Same GPS Coord.: Penetration depth: Gear Deployment 3 Water Depth: Time: 14. GPS Coord .: Penetration depth: Gear Deployment 4 Water Depth: Time: 4 1 GPS Coord.: Penetration depth: Gear Deployment 5 Water Depth: Time: GPS Coord .: Penetration depth: 1+2 Histon Corer Water Quality Readings: mg/L RMK None 2 Feet Below Surface Water: Observations -DO (mgTigt 8.14 8.7 Temp. (°C) 26.10 TDS (g/L) 1.4/ Turbidity (NTU) 39-42 Conductivity ORP (mV) 1.56 0.81 pН Salinity (%) None roll 2MK 2 Feet Above Sediment Surface: Observations: DO (mer.)gt 8.40 Turbidity (NTU) 31-36 8.8 26.15 Temp. (°C) TDS (g/L) 145 Conductivity ORP (mV) Salinity (%) pН

-Sample Typer Sedimen Station 5 7-7-04 Number Sed O 1535 Gear Deployment I 3.3m Water Depth: Time: 818631.4 9.5-lost sample 493.4 Penetration depth: GPS Coord.: Gear Deployment 2 1542 San Water Depth: Time: 8.0 5 inches San GPS Coord.: Penetration depth: Gear Deployment 3 1552 San Water Depth: Time 10 inches GPS Coord .: Penetration depth: Gear Deployment 4 Water Depth: Time: GPS Coord .: Penetration depth: Gear Deployment 5 Water Depth: Time: GPS Coord.: Penetration depth: Fiston Condit Water Quality Readings: Dove 2 Feet Below Surface Water: Observations -7.96 8.9 Temp. (°C) 25.63 DO (mg/L) TDS (g/L) 1.42 Turbidity (NTU) 24-27 Salinity (%) 0.83 133 Conductivity ORP (mV) рH - 3500 Non 2 Feet Above Sediment Surface: Observations: 7.99 9.3 Temp. (°C) 25.2 DO (mg/L) TDS (g/L) 4 80-110 Conductivity 50 ORP (mV)_ Turbidity (NTU) 0.87 Salinity (%) Gen Deployment #1 = noticed oil in the sediment

. .

- Charles

ાકુલું

1.78 32. 7

102.5 th 2010		ะ - เมือง - เหาะสายเสราะสายเสราะสายได้เห็นหู
	GM Tarrytown, NY	
	Gear Deployment Log	
· · · · · · · · · · · · · · · · · · ·		α , γ
Shifton, S. (ter and the state of the state	Sample Type Sediment
Dates 77 8-04		Sample Number Stable
א מעובר זה מעובר בי מעובר בי מעובר בי מעובר או מעובר אי מעובר בי דעובר די, מעובר בי מעובר אי מעובר אי קובר אינ	Gear Deployment 1	9 2021 A 12001 A 12001 A 12001 A 12000 A 12000 A 10000 A 10000 A 10000 A 12000 A 12000 A 12000 A 12000 A 12000 A
Water Depth: 2.05 M		Time: 0836
GPS Coord.: 665087.4 818	1803.6	Penetration depth: 16 inches
GPS Coord.: 643 08 7. 7 818	1803.4	Penetration depth: 16 succes
//////////////////////////////////////	Gear Deployment 2	2011/1
Water Depth: Sauce GPS Coord.: Sauce		Time: 0844
GPS Coord .: Sauce		Penetration depth: 18 unches
Illintar Danih	Gear Deployment 3	Times
Water Depth:		Time:
GPS Coord.:		Penetration depth:
Water Depth:	Gear Deployment 4	Time:
GPS Coord.:		Penetration depth:
j	Gear Deployment 5	
Water Depth:		Time:
GPS Coord.:		Penetration depth:
dra coold		renetiation deput.
a series and a series of another a series of a series of another and a series of another a series of another a Series and a series and a series of another a series of a	an a ann a' bha a' bhail a mar a' mar a' mar a' mar a bhail a' mar a' mar a' bhail a bhail a' bhail a bhail a' Callann ann ann an ann an ann ann ann ann	
Garland 172- Kist	m men	
F		
Water Quality Readings:	මට ඒ මිහිමි හි සිහිම වා කිසින් බෑ තොයා හි අනාන අද අනායා වී තවත් බෑ අනාන වැ පතන බෑ පුහැන වෑ සිහැන ඒ වැන්න වැ වෙ ම	nove a mai a man
Watch Quanty Readings.		
	A 1	
2 Feet Below Surface Water: Observations -	Nore	
Temp. (°C) 24.58	DO (mg/L) (~ 8)	TDS (g/L) /0.0
Conductivity 4 1.62	Turbidity (NTU) 11-17	ORP (mV) /65
рн 7.35	Salinity (%) 0.95	
2 Feet Above Sediment Surface: Observations:	Nore	
1. 1.1 -	- 20	TDS (e/L) /(O_{e} /
111	01110	
Conductivity 1. Conductivity	Turbidity (NTU)	ORP (mV) /72
рн <u>7.33</u>	Salinity (%) 0.95	le de la construcción de la constru La construcción de la construcción d
	· · · ·	
NOTUS		
	14	
		The second s
$\frac{1}{1+1} = \frac{1}{1+1} + \frac{1}$		$\mathcal{D}_{\mathbf{u}}/\mathcal{D}_{\mathbf{v}}$
		- <u>Sample's (MJ/CC</u> /, set all state
	1. 1. Sec.	.5 1.1

e,

 ~ 10

 $\sim 10^{-1}$. In (

Sample Type Seck Incur Sample Number Sec. 77

Station - 7 Date: 7-8-04

Water Depth:	1.8 m		Gear Deployment 1	<u>Time: 0910</u>
GPS Coord .: (818996.1		Penetration depth: 12.5 in ches
Water Depth:	Same	******	Gear Deployment 2	Time: 0919
GPS Coord.:	Same Same			Penetration depth: 12 in ches
Water Depth:			Gear Deployment 3	Tìme:
GPS Coord.:				Penetration depth:
Water Depth:			Gear Deployment 4	Time:
GPS Coord.:				Penetration depth:
Water Depth:			Gear Deployment 5	<u>Time:</u>
GPS Coord.:	ð.	Company and the second s		Penetration depth:
······)		
BAR STATES ALL STATES		liston (in	\mathcal{A}	
Water Quality Read				
Water Quality Read	lings:	ions- Nore		TDS (cf.) 9.8
Water Quality Read 2 Feet Below Surfac Temp. (°C)	lings:	ions - Norle DO (mg/L)	7.20	TDS (g/L) $\underline{7.8}$ ORP (mV) $\underline{/24}$
Water Quality Read	lings:	ions- Nore	7.20	TDS (g/L) ORP (mV)/24
Water Quality Read	lings: xe Water: Observat 24.65 .58 7.48	ions - Vorte DO (mg/L) Turbidity (NTU Salinity (%)	<u>7.20</u> 35-47	1 00 11
Water Quality Read	lings: xe Water: Observat 24.65 .58 	ions - Vorte DO (mg/L) Turbidity (NTU Salinity (%)	7.20 35-47 0.92	1 00 11
Water Quality Read 2 Feet Below Surfac Temp. (°C) Conductivity pH 2 Feet Above Sedim	lings: xe Water: Observat 24.65 .58 	ions - Norle DO (mg/L) Turbidity (NTU Salinity (%) vations: - See	7.20 35-47 0.92 notes belous	ORP (mV) 124
Water Quality Read	lings: xe Water: Observat 24.65 .58 	ions - Nore DO (mg/L) Turbidity (NTU Salinity (%) vations: - See DO (mg/L)	7.20 35-47 0.92 notes belous	ORP (mV) 124
Water Quality Read 2 Feet Below Surfac Temp. (°C) pH 2 Feet Above Sedim Temp. (°C) Conductivity pH	ings: se Water: Observat 24.65 7.48 7.48 ent Surface: Obser	ions - Norle DO (mg/L) Turbidity (NTU Salinity (%) vations: - See DO (mg/L) Turbidity (NTU Salinity (%)	7.20 35-47 0.92 notes below	ORP (mV) /24 TDS (g/L) ORP (mV)
Water Quality Read 2 Feet Below Surfac Temp. (°C) pH 2 Feet Above Sedim Temp. (°C) Conductivity pH	ings: se Water: Observat 24.65 7.48 7.48 ent Surface: Obser	ions - Norle DO (mg/L) Turbidity (NTU Salinity (%) vations: - See DO (mg/L) Turbidity (NTU Salinity (%)	7.20 35-47 0.92 notes below	ORP (mV) /24 TDS (g/L) ORP (mV)
Water Quality Read 2 Feet Below Surfac Temp. (°C) pH 2 Feet Above Sedim Temp. (°C) Conductivity pH	ings: se Water: Observat 24.65 7.48 7.48 ent Surface: Obser	ions - Norle DO (mg/L) Turbidity (NTU Salinity (%) vations: - See DO (mg/L) Turbidity (NTU Salinity (%)	7.20 35-47 0.92 notes below	ORP (mV) /24 TDS (g/L) ORP (mV)
Water Quality Read 2 Feet Below Surfac Temp. (°C) pH 2 Feet Above Sedim Temp. (°C) Conductivity pH	ings: se Water: Observat 24.65 7.48 7.48 ent Surface: Obser	ions - Norle DO (mg/L) Turbidity (NTU Salinity (%) vations: - See DO (mg/L) Turbidity (NTU Salinity (%)	7.20 35-47 0.92 notes below	ORP (mV) /24 TDS (g/L) ORP (mV)
Water Quality Read 2 Feet Below Surfac Temp. (°C) pH 2 Feet Above Sedim Temp. (°C) Conductivity pH	ings: se Water: Observat 24.65 7.48 7.48 ent Surface: Obser	ions - Norle DO (mg/L) Turbidity (NTU Salinity (%) vations: - See DO (mg/L) Turbidity (NTU Salinity (%)	7.20 35-47 0.92 notes below	ORP (mV) /24 TDS (g/L) ORP (mV)
Water Quality Read 2 Feet Below Surfac Temp. (°C) pH 2 Feet Above Sedim Temp. (°C) Conductivity pH	ings: se Water: Observat 24.65 7.48 7.48 ent Surface: Obser	ions - Norle DO (mg/L) Turbidity (NTU Salinity (%) vations: - See DO (mg/L) Turbidity (NTU Salinity (%)	7.20 35-47 0.92 notes below	ORP (mV) 124 TDS (g/L) ORP (mV) Usadieg talen

Stationa 🗐 🖗 Sample Types Sedmen 7.8.04 Sod amole Numb 1.8 m Gear Deployment I 0956 Water Depth: Time: 819168.2 17 inches 665.398.7 GPS Coord Penetration depth: Gear Deployment 2 1005 Water Depth: Time 7 nickes Penetration depth: GPS Coord.: Gear Deployment 3 10 09 Sime Water Depth: Time: inches 9 Penetration depth: GPS Coord. Gear Deployment 4 Water Depth: Time: GPS Coord.: Penetration depth: Gear Deployment 5 $\neg E$ Water Depth: Time: GPS Coord. Penetration depth: ar-Used. Water Quality Readings: None 2 Feet Below Surface Water: Observations T'm 24.8 9.6 DO (mg/L) 7,18 Temp. (°C) TDS (g/L) 24 Turbidity (NTU) ORP (mV) Conductivity Salinity (%) рH notes below Cu 2 Feet Above Sediment Surface. Observations Temp. (°C) DO (mg/1.) TDS (g/L) Conductivity Turbidity (NTU) ORP (mV) рH Salinity (%) Too Shallon to get and water quality

<u>к</u>.,

, to end where the second

Station 3 5 9 Date: 7-8-04		Sample Type Schment & Section 1
Water Depth: 3.05 M	Gear Deployment 1	an an a na a na a na a na a na a na a
GPS Coord: (15553, 8 819348	.4	Penetration depth: 18.5 inches
Water Depth: Same	Gear Deployment 2	Time: 10:46
Water Depth: Same GPS Coord.: Same		Penetration depth: 13 in Ches
Water Depth:	Gear Deployment 3	Time:
GPS Coord.:		Penetration depth:
Water Depth:	Gear Deployment 4	Time:
JPS Coord.:		Penetration depth:
Water Depth:	Gear Deployment 5	Time:
JPS Coord.:		Penetration depth:
icariesad 1 2 - Piston		
a now a new a n /ater Quality Readings:	19 Mart 14 Mart 21 Mart 17 Mart 18 Mart 18 Mart 4 Mart 21 Mart 24 Mart 18 Mart 19 Mart 19 Mart 19 Mart 19 Mart	12 Mar i Gan i 1960 I mar i nov i Kar i mar i kar i mar i mar i mar i mar i mar i mar i mor i mar i mar i mar i
Foot Dalow Swefoon Water Observations		

2 Feet Below Surface Water: Observations - Temp. (°C) 24.91 Conductivity 1.555 pH 7.43	MONL 7.03 DO (mg/L) 7.03 Turbidity (NTU) 11-13 Salinity (%) 0.91	TDS (g/L) 9.6 ORP (mV) 32	
2 Feet Above Sediment Surface: Observations:	None		
Temp. (°C)	DO (mg/L) 7.48	TDS (g/L) 9.2	
Conductivity .58	Turbidity (NTU) 84 - (10	ORP (mV) <u>53</u>	
рн 7.36	Salinity (%) 0.92		
י שנוכה זו היוויה יו היוויה או היוויה או היוויה יו היוויה יו היוויה או היוויה או היוויה או היוויה או היוויה אי	n maar is maa ji maar ji jaan ji kala a fala iy jaan ji pan ji maa ii maa ii maa ji maa ji maa si maa si	ana in mar ii mar ii inar ii mar ii mar ii mar ii maa n maa n maa n maa a mar ii mar ii mar ii mar ii mar ii m	<i>27 4</i> 4
			1
NOTES			
		Sampler	

;

ŝ

Sample Type - Sed inent Station 10 Dates 7-8-04 Gear Deployment I 1.2 M 1135 Water Depth: Time: 6655\$ 33.9 819485.2 10 inches GPS Coord.: Penetration depth: 1142 Gear Deployment 2 June Water Depth: Time: 17.5 Same GPS Coord .: Penetration depth: Gear Deployment 3 Water Depth: Time: GPS Coord.: Penetration depth: Gear Deployment 4 Water Depth: Time: GPS Coord.: Penetration depth:

Gear Deployment 5

Piston corer +12-

Time:

Penetration depth:

Water Quality Readings:			
2 Feet Below Surface Water: Observat			
Temp. (°C) <u>25.38</u>	DO (mg/L) 7.86	TDS (g/L) 9.7	
Conductivity 1.57	Turbidity (NTU) 4-6	ORP (mV) 165	
рн 7.56	Salinity (%)	-	
2 Feet Above Sediment Surface: Obser	vations: See Notes below		
Гетр. ([°] С)	DQ_(mg/L)		
Conductivity	Turbidity (NTU)	ORP (mV)	
ьн	Salinity (%)		
			T 2000 IT 2000 IT 2000 IS 2004 IT 2005 I
ions Too Shallo	a to 1 the month in	to or an	~ 1 ` ~~
1012 <u>100 0114440</u>	w take 2nd w	ale frank 20	access.
		$- \mathcal{O} \rightarrow \mathcal{O}$	Constanting the second
		[6] S. M. S. M. Sandara, A. S. Sandara, S. S. Sandara, S. S. Sandara, S Sandara, S. Sandara, S. S Sandara, Sandara, S. Sandara, S. Sandara, S. Sandara, S. Sandara, S. Sandara, Sand	
		Samplet	1

Water Depth:

GPS Coord.:

.

Station	er og skalende at de stander af de stander en ser en s Er som en ser	sample Type Dediment
Date: 7-8-04		Sample Number Sea 11
· · · · · · · · · · · · · · · · · · ·		
Water Depth: 3.15	Gear Deployment 1	Time: 1335
GPS Coord.: 664720.7 8	18.193.4	Penetration depth: 10 inches
	-	
Water Depth: Sane	Gear Deployment 2	Time: (<u>344</u>
Water Depth: Saul GPS Coord.: Saul		Penetration depth: 12 inches
	Gear Deployment 3	
Water Depth:		Time:
GPS Coord.:		Penetration depth:
	Gear Deployment 4	
Water Depth:		Time:
GPS Coord.:		Penetration depth:
	Gear Deployment 5	
Water Depth:		Time:
GPS Coord.:	- <u></u>	Penetration depth:
Gearlised. 17-	iston cored	
Water Quality Readings:		
2 Feet Below Surface Water: Observations -	nore	
Temp. (°C) 25.30	DO (mg/L) 7.76	TDS (g/L) 8.7
Conductivity 1.40	Turbidity (NTU) 19-22	ORP (mV) 30
рн <u>7.46</u>	Salinity (%) 0.8 /	
2 Feet Above Sediment Surface: Observation		
Temp. (°C) <u>25.29</u>	DO (mg/L) 8.18	TDS (g/L) ?.5
Conductivity 1.5.5	Turbidity (NTU) <u>210 - 360</u>	ORP (mV)
^{рн} <u>7.70</u>	Salinity (%) 0.90	
NOTES:		
建筑机构 建氯化物 物种 医神经神经神经		的复数形式 化分子子 化分子子 化非常分子的 化分子的 化分子子
	Construction of the second	

Samplers

- -

.

Water Depth: 3. / 5. M Gear Deployment 1 Time: / 4': 25 Penetration depth: (3) iiii.def Penetration depth: (3) Water Depth: Sowel Gear Deployment 2 Time: / 4': 30 GPS Coord: Sawe Penetration depth: (1) 5 Water Depth: Gear Deployment 3 Time: // 4': 30 GPS Coord: Penetration depth: // 5 Water Depth: Gear Deployment 4 Time: GPS Coord: Penetration depth: // 5 Water Depth: Gear Deployment 5 Time: GPS Coord: Penetration depth: // 1 GPS Coord: Penetration depth: // 1 GPS Coord: Gear Deployment 5 Time: GPS Coord: Penetration depth: // 1 GPS Coord:	Water Depth: 3. / 5 M Geer Deployment 1 Time: / 4: 25 GPS Coord: Geer Deployment 2 Time: / 4: 30 Water Depth: Source Geer Deployment 2 Time: / 4: 30 Water Depth: Source Geer Deployment 3 Time: / 4: 30 Water Depth: Geer Deployment 3 Time: / 4: 30 Water Depth: Geer Deployment 3 Time: / 4: 30 OPS Coord: Pointration depth: // 5 // 5 Water Depth: Geer Deployment 4 Time: // 5 Water Depth: Geer Deployment 5 Time: // 5 ØPS Coord: Pointration depth: // 5 // 5 Water Quality Readings: Geer Deployment 5 Time: // 5 Vater Quality Readings: // 5 // 5 // 5 // 5 Vater Quality Readings: // 5 // 5 // 5 // 5 Vater Quality Readings: // 7 // 5 // 5 // 5 Vater Quality Readings: // 7 // 5 // 5 // 5 Point (*) // 5	Station: /2		Sample Type: Jedi Meut
Water Depth: 3. / 5 M Geer Dephyment 1 Time: $/4: 25$ GPS Coord: Gear Dephyment 2 Time: $/4: 30$ Water Depth: Same Gear Dephyment 2 Time: $/4: 30$ GPS Coord: Same Gear Dephyment 3 Time: $/4: 30$ Water Depth: Gear Dephyment 3 Time: $/4: 55$ GPS Coord: Same Gear Dephyment 3 Time: GPS Coord: Penetration depth: $/4: 55$ GPS Coord: Penetration depth: Gear Dephyment 4 Mater Depth: Gear Dephyment 5 Time: GPS Coord: Penetration depth: Penetration depth: GPS Coord: Gear Dephyment 5 Time: Mater Depth: Gear Dephyment 5 Time: GPS Coord: Penetration depth: Penetration depth: GPS Coord:	Water Depth: 3. / 5 M Get Deployment I Time: $/4:25$ GPS Coord. Get Algebra Protestion depth: $/3$ incles Yater Depth: Get Deployment 2 Time: $/4:30$ GPS Coord.: Sawe Pointration depth: $/3$ incles GPS Coord.: Sawe Pointration depth: $/4:30$ GPS Coord.: Sawe Pointration depth: $/4:5$ GPS Coord.: Pointration depth: $/4:5$ $/4:5$ GPS Coord.: Pointration depth: $/4:5$ $/4:5$ Vater Depth: Get Deployment 3 Time: $/4:5$ GPS Coord.: Pointration depth: $/4:5$ $/4:5$ Water Depth: Get Deployment 4 Time: $/4:5$ GPS Coord.: Cord Deployment 5 Time: $/4:5$ Vater Depth: Get Deployment 5 Time: $/4:5$ GPS Coord.: Pointration depth: $/4:5$ $/4:5$ Vater Depth: Get Deployment 5 Time: $/4:5$ GPS Coord.: Pointration depth: $/4:5$ $/4:5$ Penetratio	Date 7-8-04		Sample Number Sed y
Water Depti: 5. / 5. // GPS Coord: 64/4887.0 Some Gen Deployment 2 Time: /4'.30 Penetration depth: /1'.5 GPS Coord: Same GPS Coord: Penetration depth: GPS Coord: Gear Deployment 3 GPS Coord: Penetration depth: GPS Coord: Gear Deployment 5 Time: Penetration depth: GPS Coord: DO (ng/1) Stationto: </td <td>Water Depth: 5. / 5. // Ima: / 4 : 25 GPS Coord.: Get M887.0 8189.65.9 Penetration depth: (3 incluss) Water Depth: Same Gear Deployment 2 Ima: / 4 : 30 Water Depth: Gear Deployment 3 Tune: / 4 : 30 Water Depth: Gear Deployment 3 Tune: / 4 : 30 Water Depth: Gear Deployment 4 Tune: // 5 Water Depth: Gear Deployment 4 Tune: // 5 Water Depth: Gear Deployment 5 Time: // 5 Vater Quality Readings: 2 Feat Below Starface Water: Observations: // 1/ 1/ 1/ 1/ 1/ 1/ 1/ 1/ 1/ 1/ 1/ 1/ 1</td> <td></td> <td></td> <td>·</td>	Water Depth: 5. / 5. // Ima: / 4 : 25 GPS Coord.: Get M887.0 8189.65.9 Penetration depth: (3 incluss) Water Depth: Same Gear Deployment 2 Ima: / 4 : 30 Water Depth: Gear Deployment 3 Tune: / 4 : 30 Water Depth: Gear Deployment 3 Tune: / 4 : 30 Water Depth: Gear Deployment 4 Tune: // 5 Water Depth: Gear Deployment 4 Tune: // 5 Water Depth: Gear Deployment 5 Time: // 5 Vater Quality Readings: 2 Feat Below Starface Water: Observations: // 1/ 1/ 1/ 1/ 1/ 1/ 1/ 1/ 1/ 1/ 1/ 1/ 1			·
GPS Coord. Get V887.0 818965.9 Water Depth: Same Time: /4'30 GPS Coord.: Same Penetration depth: /1'30 GPS Coord.: Same Penetration depth: /1'30 GPS Coord.: Same Penetration depth: /1'.5 GPS Coord.: Gear Deployment 3 Time: Penetration depth: GPS Coord.: Gear Deployment 4 Time: Penetration depth: GPS Coord.: Gear Deployment 5 Time: Penetration depth: GPS Coord.: Penetration depth: Penetration depth: Penetration depth: GPS Coord.: Penetration depth:	GPS Coord.: Get Deployment 2 Time: / 4/: 3D Water Depth: Same Gear Deployment 2 Time: / 4/: 3D Water Depth: Gear Deployment 2 Time: / 4/: 3D Water Depth: Gear Deployment 2 Time: / 4/: 3D Water Depth: Gear Deployment 3 Time: / 4/: 3D Water Depth: Gear Deployment 4 Time: // 4/: 5C Water Depth: Gear Deployment 4 Time: // 4/: 5C Water Depth: Gear Deployment 4 Time: // 4/: 5C Water Depth: Gear Deployment 4 Time: // 4/: 5C Water Depth: Gear Deployment 5 Time: // 4/: 5C Water Quality Readings: Corr Deployment 5 Time: // 4/: 5C Water Quality Readings: 1.11 1.11 1.11 / 5C / 5C Water Quality Readings: 1.11 1.11 / 5C / 5C <td>Water Depth: 3.15 M</td> <td>Gear Deployment 1</td> <td>Time: /4:25</td>	Water Depth: 3.15 M	Gear Deployment 1	Time: /4:25
Water Depth: Some Time: / 4/:30 GPS Coord.: Same Gear Deployment 2 Time: // 5 Water Depth: Gear Deployment 3 Time: // 5 GPS Coord.: Penetration depth:	Waar Depth: Some Time: /4'.30 OPS Coord: Same Pointration depth: /1'.5 Water Depth: Gear Deployment 3 Time: /1'.5 Water Depth: Gear Deployment 4 Time: /1'.5 Water Depth: Gear Deployment 4 Time: /1'.5 OPS Coord: Penetration depth: Penetration depth: /// Vater Depth: Gear Deployment 5 Time: /// OPS Coord: Penetration depth: Penetration depth: /// Vater Quality Readings: /// Penetration depth: /// Vater Quality Readings: /// /// Penetration depth: /// Vater Quality Readings: /// /// /// /// /// 2 Feet Above Sediment Surface: Observations: /// /// /// /// /// Pit ///	1		Penetration depth: 13 inches
GPS Coord: Same Penetration depth: //. 5 Water Depth: Gear Deployment 3 Time:	GPS Coord: Same Penetration depth: //. 5 Viter Depth: Gear Deployment 3 Time:		••••	
Water Depth: Gear Deployment 3 GPS Coord.: Penetration depth: GPS Coord.: Gear Deployment 4 Mater Depth: Gear Deployment 4 GPS Coord.: Penetration depth: Water Quality Readings: Penetration depth: Valuer Quality Readings: Penetration depth: Peret Below Surface Water: Observations: Λ_{DVAL} Do (mg/L) 8.09 TDS (g/L) Conductivity 1.30 Peret Above Sediment Surface: Observations: Λ_{DVAL} Peret Above Sediment Surface: Observations: Λ_{DVAL} Penetration (γ_1 γ_2 γ_1 Salinity (γ_1) γ_2 γ_1 γ_2 γ_1 γ_1 γ_2 γ_1 γ_1 γ_2 γ_2	Water Depth: Gear Deployment 3 GPS Coord.: Penetration depth: Water Depth: Gear Deployment 4 GPS Coord.: Penetration depth: Water Depth: Gear Deployment 5 Water Depth: Gear Deployment 5 Water Depth: Gear Deployment 5 GPS Coord.: Penetration depth: Water Quality Readings: Penetration depth: Water Quality Readings: Penetration depth: Penetration depth: Penetration depth: Water Quality Readings: Penetration depth: Penetration depth: Penetration depth: Water Quality Readings: Penetration depth: Penetration depth: Penetration depth: Water Quality Readings: Penetration depth: Penetration depth: Penetration depth: Pin (*C) 2.5 .7 4' DO (mg/L) DO (mg/L) 8.0 9 ORP (mV) Pin ' 7.5 2 Salinity (%) 0.7 .7 .5 * 2 Feet Above Sediment Surface: Observations: (ASNL) Penetration (%) ORP (mV) 145 Pin ' <t< td=""><td>Water Depth: Jone</td><td></td><td></td></t<>	Water Depth: Jone		
Water Depth: Time: GPS Coord.: Penetration depth: GPS Coord.: Do (mg/L) Store GPS Coord.: Salinity (%) O.755 GP Conductivity I.51 Turbidity (RPU) <td>Water Depth. Time: OPS Coord.: Penetration depth: Water Depth: Gear Deployment 4 (If S Coord.: Penetration depth: (If S Coord.: (If S Coord.: <</td> <td>GPS Coord.: Jame</td> <td></td> <td>Penetration depth: 11.5</td>	Water Depth. Time: OPS Coord.: Penetration depth: Water Depth: Gear Deployment 4 (If S Coord.: Penetration depth: (If S Coord.: (If S Coord.: <	GPS Coord.: Jame		Penetration depth: 11.5
GPS Coord.: Penetration depth: Water Depth: Gear Deployment 4 GPS Coord.: Penetration depth: GPS Coord.: Penetration depth: Gear Deployment 5 Time: Gear Deployment 5 Time: Gear Deployment 5 Time: Gear Deployment 5 Time: Gear Deployment 6 Time: Penetration depth: Penetration depth: Value Quality Readings: Penetration depth: Penetrations: Mode/A Penetration depth: Penetration depth: Value Quality Readings: Penetration depth: Penetrations: Mode/A Do (mg/L) S. 0.9 Turbidity (wrtt) 1 OH / Prede Above Sectiment Surface: Observations: MOV/A Conductivity 1.51 Turbidity (wrtt) 0.755 Penetrationes: Po. Order Do (mg/L) S. 0/4 Turbidity (wrtt) 0.88	GPS Coord: Penetration depth: Water Depth: Gear Deployment 4 GPS Coord: Penetration depth: GPS Coord: Gear Deployment 5 Water Depth: Gear Deployment 5 GPS Coord: Penetration depth: GPS Coord: Penetration depth: GPS Coord: Penetration depth: GPS Coord: Penetration depth: Vater Quality Readings: Penetration depth: 2 Feet Below Surface Water: Observations - (\Low / Low /	Water Depth:	Gear Deployment 3	Time:
Water Depth: Gear Deployment 4 GPS Coord.: Penetration depth: Gear Deployment 5 Time: Water Depth: Gear Deployment 5 GPS Coord.: Penetration depth: GPS Coord.: DO (mgL) GPS Coord.: P. O GPS Coord.: DO (mgL)<	Gear Deployment 4 Water Depth: Penetration depth: GPS Coord : Penetration depth: Water Depth: Gear Deployment 5 Water Council Penetration depth: GPS Coord : Penetration depth: Water Quality Readings: Penetration depth: Vater Quality Readings: Penetration depth: Penetration depth: Penetration depth: Water Quality Readings: Penetration depth: Penetration depth: Penetration depth: Water Quality Readings: Penetration depth: Penetration depth: Penetration depth: Water Quality Readings: Penetration depth: Penetration depth: Penetration depth: Water Quality Readings: Penetration depth: Penetration depth: Pene	J	······································	
Water Depth: Time: GPS Coord.: Penetration depth: Gray Depthy: Gray Deployment 5 Water Depth: Time: GPS Coord.: Penetration depth: Gray Level Penetration depth: Gravet Quality Readings: Penetration depth:<	Water Depth: Time: GPS Coord.: Penetration depth: Water Depth: Gear Deployment 5 Time: Penetration depth: GPS Coord.: Penetration depth: GPS Coord.: Penetration depth: Water Quality Readings: Penetrations Water Quality Readings: Penetrations 2 Feet Below Surface Water: Observations 1.30 Turbidity (vrtu) PH 7.52 Salinity (%) 0.755 Penetrations: ASVU Conductivity 1.51 Turbidity (vrtu) 9 ORP (mV) 1/45 PH 7.57			<u>· · · · · · · · · · · · · · · · · · · </u>
Gear Deployment 5 Time: Penetration depth: Penetration depth: The Polyment 5 Time: Penetration depth: Penetration depth: The Polyment 5 Time: Penetration depth: Penetration depth: Water Quality Readings: 2 Penet Relow Surface Water: Observations - Mode Penetrations - Mode Conductivity 1.30 Turbidity (vrrt) J ORP (mV) J 36 Penet Above Sediment Surface: Observations: MOVU	Gear Deployment 5 Time: GPS Coord: Penetration depth: Gear Deployment 5 Time: GPS Coord: Penetration depth: Quality Readings: Vater Quality Readings: DO (mg/L) SO $(2L)$ S. // P Water Quality Readings: DO (mg/L) S. O $(2L)$ S. // P DO (prove the provided performance) Temp. (°C) $2S$ $7P$ DO (mg/L) 0.755 ORP (mV) 1.36 PH 7.52 Salinity (%) 0.755 ORP (mV) 1.36 2 Feet Above Sediment Surface: Observations: $N = N = 0$ $0.0 (mg/L)$ 0.755 $0.0 (mg/L)$ 0.88 2 Feet Above Sediment Surface: Observations: $N = N = 0$ 0.88 0.88 0.745 0.874 2 For Above Sediment Surface: Observations: $N = N = 0$ 0.88 0.88 0.88 0.745 2 For Above Sediment Surface: Observations: $N = N = 0$ 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88 <	Water Depth:	Gear Deployment 4	Time:
Water Depth: Time: GPS Coord: Penetration depth: GPS Coord: Penetration depth: Car Used: Image: Penetration depth: Water Quality Readings: Preet Below Surface Water: Observations - Mp/U Preet Below Surface Water: Observations - Mp/U TDS (g/L) Conductivity I.30 Turbidity (wrto) Image: Preet Above Sectiment Surface: Observations: MSVU Preet Above Sectiment Surface: Observations: MSVU Penet Above Sectiment Surface: Observations: MSVU Conductivity I.51 DO (mg/L) S./Y TDS (g/L) 9.3 Conductivity I.51 Do (mg/L) S./Y TDS (g/L) 9.3 ORP (mV) 145 ORP (mV) 145 OH 7.54	Water Depth: Time: GPS Cord: Penetration depth: Quality Readings: Penetration depth: Water Quality Readings: Do (mg/L) R. O9 TDS (g/L) S./// Present Surface Water: Observations - MOML Do (mg/L) S. O9 ORP (mV) I 366 Penetration depth: Do (mg/L) S. O9 TDS (g/L) S./// S./// DS (g/L) S./// Penetration depth: Do (mg/L) S. O9 TDS (g/L) S./// S./// DS (g/L) S./// S./// DR (mV) I 366 S./// DR (mV) I 366 S./// DS (g/L) 9.3 S./// DS (g/L) 9.3 S./// DS (g/L) 9.3 S./// DR (mV) //// J///	GPS Coord.:		Penetration depth:
Penetration depth: Cap UN-d Penetration depth: Value Value Colservations -	Penetration depth: Cord::::::::::::::::::::::::::::::::::::		Gear Deployment 5	
Surface Start Observations - Nove Water Quality Readings: 2 Feet Below Surface Water: Observations - Nove Temp. (°C) 25.74 DO (mg/L) 8.09 Turbidity (NTU) 1 ORP (mV) 136 Satinity (%) 0.755 Peet Above Sediment Surface: Observations: NONU Peet Above Sediment Surface: Observations: NONU Peet Above Sediment Surface: Observations: NONU Conductivity 1.51 Turbidity (NTU) 9.75 ORP (mV) 145 Satinity (%) 0.88	Vater Quality Readings: 2 Feet Below Surface Water: Observations- (Λ_{DVU} Temp. (°C) 25.74 DO (mg/L) 8.09 Turbidity (NTD) 1 ORP (mV) 1.36 PH 7.52 Satinity (%) 0.755 Peet Above Sediment Surface: Observations: (Λ_{SVU} Temp. (°C) 25.56 DO (mg/L) 6.14 Conductivity 1.51 Turbidity (NTD) 0.755 PH 7.54 Salinity (%) 0.88	Í .	· ·	
Water Quality Readings: 2 Feet Below Surface Water: Observations - $(\Lambda_0 M_{2} / M_{$	Water Quality Readings: 2 Feet Below Surface Water: Observations - $\Lambda_{D}M/$ Temp. (°C) 25.74 DO (mg/L) 8.09 Conductivity 1.30 Turbidity (NTU) 0.725 PH * 7.52 Salinity (%) 0.725 2 Feet Above Sediment Surface: Observations: $\Lambda_{D}M/$ Image: Conductivity (NTU) 1.36 2 Feet Above Sediment Surface: Observations: $\Lambda_{D}M/$ Image: Conductivity (NTU) 0.725 Conductivity 1.51 Turbidity (NTU) 0.725 ORP (mV) 1.36 PH .7.54 Salinity (%) 0.725 ORP (mV) 1.36 Solutivity 1.51 Turbidity (NTU)	GPS Coord.:		Penetration depth:
Water Quality Readings: 2 Feet Below Surface Water: Observations - $(\Lambda_0 M_{2} / M_{$	Water Quality Readings: 2 Feet Below Surface Water: Observations - $\Lambda_{D}M/$ Temp. (°C) 25.74 DO (mg/L) 8.09 Conductivity 1.30 Turbidity (NTU) 0RP (mV) 1.36 pH \checkmark 7.52 Satinity (%) 0.725 2 Feet Above Sediment Surface: Observations: $\Lambda_{D}MU$ Image: Second Structure of		γ (λ)	
Preet Below Surface Water: Observations - Λ_{OME} Temp. (°C) 25.74 DO (mg/L) 8.09 TDS (g/L) $8./$ Conductivity 1.30 Turbidity (NTU) 1 ORP (mV) 1.36 SH $^{\prime}$ 7.52 Salinity (%) 0.755 ORP (mV) 1.36 Preet Above Sediment Surface: Observations: Λ_{ONLC} 0.755 0.755 0.755 Preet Above Sediment Surface: Observations: Λ_{ONLC} 0.755 0.755 0.755 Preet Above Sediment Surface: Observations: Λ_{ONLC} 0.755 0.755 0.755 Do (mg/L) 0.755 0.755 0.755 0.755 0.755 0.755 Preet Above Sediment Surface: Observations: Λ_{ONLC} 0.755 0.755 0.747 0.73 0.735 Ocnductivity 1.51 0.754 0.788 0.747 0.788 0.745 OH 7.54 0.788 0.788 0.745 0.745 0.745	2 Feet Below Surface Water: Observations - $\Lambda_{0}\Lambda_{0}/I_{-}$ Temp. (°C) 25.74 DO (mg/L) 8.09 TDS (g/L) 8.1 Conductivity 1.30 Turbidity (NTU) 1 ORP (mV) 1.36 pH 7.52 Salinity (%) 0.755 ORP (mV) 1.36 2 Feet Above Sediment Surface: Observations: $\Lambda_0 \Lambda_0 \Lambda_0$ Image: Sediment Surface: Observations: $\Lambda_0 \Lambda_0 \Lambda_0$ Image: Sediment Surface: Observations: $\Lambda_0 \Lambda_0 \Lambda_0$ 7 temp. (°C) 25.56 DO (mg/L) Image: Sediment Surface: Observations: $\Lambda_0 \Lambda_0 \Lambda_0$ Image: Sediment Surface: Observations: $\Lambda_0 \Lambda_0 \Lambda_0$ Conductivity 1.51 Turbidity (NTU) 9 ORP (mV) 1/45 pH 7.54 Salinity (%) 0.88 0.88 0.88	OcarUsed	1, 67 MISTON LOVER	
Preet Below Surface Water: Observations - Λ_{OME} Temp. (°C) 25.74 DO (mg/L) 8.09 TDS (g/L) $8./$ Conductivity 1.30 Turbidity (NTU) 1 ORP (mV) 1.36 SH $^{\prime}$ 7.52 Salinity (%) 0.755 ORP (mV) 1.36 Preet Above Sediment Surface: Observations: Λ_{ONLC} 0.755 0.755 0.755 Preet Above Sediment Surface: Observations: Λ_{ONLC} 0.755 0.755 0.755 Preet Above Sediment Surface: Observations: Λ_{ONLC} 0.755 0.755 0.755 Do (mg/L) 0.755 0.755 0.755 0.755 0.755 0.755 Preet Above Sediment Surface: Observations: Λ_{ONLC} 0.755 0.755 0.747 0.73 0.735 Ocnductivity 1.51 0.754 0.788 0.747 0.788 0.745 OH 7.54 0.788 0.788 0.745 0.745 0.745	2 Feet Below Surface Water: Observations - $\Lambda_{0}\Lambda_{0}/I_{-}$ Temp. (°C) 25.74 DO (mg/L) 8.09 TDS (g/L) 8.1 Conductivity 1.30 Turbidity (NTU) 1 ORP (mV) 1.36 pH 7.52 Salinity (%) 0.755 ORP (mV) 1.36 2 Feet Above Sediment Surface: Observations: $\Lambda_0 \Lambda_0 \Lambda_0$ Image: Sediment Surface: Observations: $\Lambda_0 \Lambda_0 \Lambda_0$ Image: Sediment Surface: Observations: $\Lambda_0 \Lambda_0 \Lambda_0$ 7 temp. (°C) 25.56 DO (mg/L) Image: Sediment Surface: Observations: $\Lambda_0 \Lambda_0 \Lambda_0$ Image: Sediment Surface: Observations: $\Lambda_0 \Lambda_0 \Lambda_0$ Conductivity 1.51 Turbidity (NTU) 9 ORP (mV) 1/45 pH 7.54 Salinity (%) 0.88 0.88 0.88	F <i>·····</i>		· · · · · · · · · · · · · · · · · · ·
Cemp. (°C) 25.74 DO (mg/L) 8.09 TDS (g/L) $8./$ Conductivity 1.30 Turbidity (NTU) 1 ORP (mV) 1.36 DH $''$ 7.52 Salinity (%) 0.755 ORP (mV) 1.36 2 Feet Above Sediment Surface: Observations: $105VU$ 0.755 0.755 0.755 2 Feet Above Sediment Surface: Observations: $105VU$ 0.755 $00 (mg/L)$ 0.755 Conductivity 1.51 $00 (mg/L)$ 0.755 $00 (mg/L)$ Conductivity 1.51 Turbidity (NTU) 0.888 OH 7.54 Salinity (%) 0.888	I Temp. (°C) 25.74 DO (mg/L) 8.09 TDS (g/L) 8./ Conductivity 1.30 Turbidity (NTU) 0.75 ORP (mV) 1.36 pH . 7.52 Salinity (%) 0.75 ORP (mV) 1.36 2 Feet Above Sediment Surface: Observations: VOVU Temp. (°C) 25.56 DO (mg/L) Conductivity 1.51 Turbidity (NTU) PH . <t< td=""><td>Water Quality Readings:</td><td></td><td></td></t<>	Water Quality Readings:		
Cemp. (°C) 25.74 DO (mg/L) 8.09 TDS (g/L) $8./$ Conductivity 1.30 Turbidity (NTU) 1 ORP (mV) 1.36 DH $''$ 7.52 Salinity (%) 0.755 ORP (mV) 1.36 2 Feet Above Sediment Surface: Observations: $105VU$ 0.755 0.755 0.755 2 Feet Above Sediment Surface: Observations: $105VU$ 0.755 $00 (mg/L)$ 0.755 Conductivity 1.51 $00 (mg/L)$ 0.755 $00 (mg/L)$ Conductivity 1.51 Turbidity (NTU) 0.888 OH 7.54 Salinity (%) 0.888	I conductivity 1.30 Turbidity (NTU) 1.30 pH 7.52 Salinity (%) 0.75 2 Feet Above Sediment Surface: Observations: VOVU 00 (mg/L) 8./4 Temp. (°C) 25.56 DO (mg/L) 8./4 Conductivity 1.51 Turbidity (NTU) 0.75 I conductivity 1.51 Salinity (%) 0.75 PH 7.52 Salinity (%) 0.75 ORP (mV) 1.36 I conductivity 1.51 Turbidity (NTU) PH 7.54 Salinity (%) 0.88 NOTES Salinity (%) 0.88			
Conductivity 1.30 Turbidity (NTU) 0.75 ORP (mV) 136 DH 7.52 Salinity (%) 0.75 ORP (mV) 136 22 Feet Above Sediment Surface: Observations: $\Lambda \delta V \omega$ 0.75 TDS (g/L) 9.3 Cemp. (°C) 25.56 DO (mg/L) $6696976976976976976976976976976976976976$	Conductivity 1.30 Turbidity (NTU) 0.75 pH .4' 7.52 Satinity (%) 0.755 2 Feet Above Sediment Surface: Observations: ./.0700 Temp. (°C)			TDS (g/L)
2 Feet Above Sediment Surface: Observations: $N S W$ Temp. (°C) 25.56 DO (mg/L) Conductivity 1.51 Turbidity (NTU) 9 OH 7.54 Salinity (%) 0.88	2 Feet Above Sediment Surface: Observations: NOW Temp. (°C) 25.56 DO (mg/L) Top (g/L) 9.3 Conductivity 1.51 Turbidity (NTU) 0.88 0RP (mV) 145 pH 7.54 Salinity (%) 0.88 0.88 0.88			
Temp. (°C) 25.56 DO (mg/L) Conductivity TDS (g/L) 9.3 Conductivity 1.51 Turbidity (NTU) 99 ORP (mV) 145 0H 7.54 Salinity (%) 0.88 0.88	Temp. (°C) 25.56 DO (mg/L) Top for	рн <u>7.52</u>	Salinity (%) 0.75	
Temp. (°C) 25.56 DO (mg/L) Conductivity TDS (g/L) 9.3 Conductivity 1.51 Turbidity (NTU) 99 ORP (mV) 145 0H 7.54 Salinity (%) 0.88 0.88	Temp. (°C) 25.56 DO (mg/L) Top for			
Conductivity 1.51 Turbidity (NTU) 9 ORP (mV) 145 oH 7.54 Salinity (%) 0.88 0.88	Conductivity 1.51 pH 7.54 Salinity (%) 0.88 ORP (mV) 145 NOTES		alter a lit	TDS (p(1) 9.3
эн <u>7.54</u> Salinity (%) <u>0.88</u>	pH 7.54 Salinity (%) 0.88		ILIAN O	
YOTES (- 90	
YOTES:		· · · · · · · · · · · · · · · · · · ·		
		NOTES		
		Provide and the second of the		
				Sampler:

-

Date 7-8-04		Sample Number Sed 13
		na provinské provinské podla za král kolonik král konstrukci se se se se provinské provinské král král král krá Na provinské provinské provinské provinské král král král král král král král král
Water Depth: 3./ M	Gear Deployment 1	<u>Time: 1520</u>
GPS Coord.: 665053.9 819132.5		Penetration depth: 13 viches
Water Depth: Seve	Gear Deployment 2	<u>Time: 1536</u>
GPS Coord: Same		Penetration depth: 11.5 inches
Water Depth:	Gear Deployment 3	Time:
GPS Coord.:		Penetration depth:
Water Depth:	Gear Deployment 4	Time:
GPS Coord.:		Penetration depth:
Water Depth:	Gear Deployment 5	Time:
GPS Coord.:		Penetration depth:
$\frac{1}{2} - \frac{1}{2} + \frac{1}{2} - \frac{1}{2} + \frac{1}$	·=·=·=·=·=·=·=·=·=·	
Water Quality Readings:	שבק כן מנבר ש, שבור זו מוניר אן נעשר לי משבי על מוצב על מוצב או אוייר אין אייר אי	
2 Feet Below Surface Water: Observations - A Jone		
Temp. (°C) 25.99 DO (mg/L)	8.14	TDS (g/L) 8.6
Conductivity 1.57 Turbidity (NTU) pH 7.58 Salinity (%)	0.8/	ORP (mV) <u>57</u>
2 Feet Above Sediment Surface: Observations: Nore		
Temp. (°C) 25.99 DO (mg/L)	8.47	TDS (g/L) 8.7
Conductivity 1.46 Turbidity (NTU) pH 7.57 Salinity (%)	<u> </u>	ORP (mV)
,		
NOTES:		
Gear Used Water Quality Readings: 2 Feet Below Surface Water: Observations - None		

Ĵ,

يېږ د پېښې د په د د د . در د د کې و د د د د .

 n

Sample

Station: 14		It Sample Type Sedipleut
Date 7-9-04		Sample Number Sed 14
_ <i></i>		
Water Depth: 2.05 M	Gear Deployment 1	Time: 0845
GPS Coord.: (665211.6 814	1311.3	Penetration depth: 16 inches
,	Gear Deployment 2	
Water Depth: Same		<u>Time: 8:52</u>
GPS Coord.: Jam		Penetration depth: 16.75 in ches
}	Gear Deployment 3	
Water Depth:		<u>Time:</u>
GPS Coord.:		Penetration depth:
Weten Deuth.	Gear Deployment 4	Time
Water Depth:		Time:
GPS Coord.:		Penetration depth:
Water Depth:	Gear Deployment 5	Time:
GPS Coord.:	•	Penetration depth:
112	Piston Cored	
Gearlised. <u>CL</u>	VIDEN COLON	
Water Quality Readings:		
·		
2 Feet Below Surface Water: Observations Temp. (°C) 24.93	-120	99
	DO (mg/L) 7.37 Turbidity (NTU) 29-4/7	TDS (g/L) 8.8 ORP (mV) $3/$
N // a	Salinity (%) <u>6.8/</u>	ORP (mV)3
рн <u>1.42</u>	Samuty (70)	
2 Feet Above Sediment Surface: Observation	ons: None	
Temp. (°C) <u>24.80</u>	DO (mg/L) 7.24	TDS (g/L)
Conductivity 1.54	Turbidity (NTU) 47-62	ORP (mV) - 6
рн <u>7.38</u>	Salinity (%) 0.88	

Same in the second

Station

NOTES:

Station 15^{-7} Station 7^{-9}		Sample Type Sed i meut Sample Number Sed 15
Water Depth: 2.5 M GPS Coord.: (de 5382.9 81949	Gear Deployment 1	Time: 0915 Penetration depth: 14.25 wiebes
Water Depth: Sawe GPS Coord.: Same	Gear Deployment 2	Time: 0920 Penetration depth: 2.5 wickes
Water Depth: GPS Coord.:	Gear Deployment 3	Time: Penetration depth:
Water Depth: GPS Coord.:	Gear Deployment 4	Time: Penetration depth:
Water Depth: GPS Coord.:	Gear Deployment 5	Time: Penetration depth:
Gearlised	Piston coner	
Water Quality Readings: 2 Feet Below Surface Water: Observations -	Norre	
Temp. (°C) 24.86 Conductivity 1.46 pH 7.51	DO (mg/L) 7.54 Turbidity (NTU) 5/15-99 Salinity (%) 0.85	TDS (g/L) 9./ ORP (mV) 39
2 Feet Above Sediment Surface: Observations: Temp. (°C) 24.85 Conductivity 1.55 pH 7.50	NOVE DO (mg/L) 7.69 Turbidity (NTU) 200-250 Salinity (%) 0.89	TDS (g/L) 9.9 ORP (mV) 113
NOTES		sampler AAAC

a series free and the series

$\frac{\text{Station}}{\text{Date'}} = \frac{1}{2} $		Sample Type SED Sample Number
· (·)		
Water Depth: 3.2m	Gear Deployment 1	Time: <u>1955</u>
	519149.9	Penetration depth: 16.75"
Water Depth: Same	Gear Deployment 2	Time: 1002
		Penetration depth: $14.75^{\prime\prime}$
GPS Coord.: Same	-	
Water Depth:	Gear Deployment 3	Time:
GPS Coord.:	_	Penetration depth:
ļ	Gear Deployment 4	
Water Depth:	·	Time:
GPS Coord.:	_	Penetration depth:
	Gear Deployment 5	Time:
Water Depth:	_ ·	
GPS Coord.:		Penetration depth:
1 1	n	
Gear Used: 11/	fiston cover	
Water Quality Readings:	•	
D. F D. I	10 000	
2 Feet Below Surface Water: Observations -	Nove DO (mg/L) 7.30.32	TDS (g/L) 8 ·/
Conductivity 1,31	Turbidity (NTU)	ORP (mV) / 20
рн 7,58	Salinity (%) 0.75	
$\frac{12 \text{ Feet Above Sediment Surface: Observations:}}{17 \text{ Temp. (°C)}} 25.07$	po(mg/L) (
Temp. (°C) 23.07 Conductivity 1.65	DO (mg/L)	$\frac{\text{TDS (g/L)}}{\text{ORP (mV)}} \frac{6.2}{8}$
pH 7.47	Salinity (%) $2 \cdot 97$	
		· · · · · · · · · · · · · · · · · · ·
······································		
NOTES		
		Sampler

ėş.

S 3

Station 7			Sample Type Sed
Water Depth: 3.0 M GPS Coord.: 64475584	819	Gear Deployment I	Time: 1035 Penetration depth: 74
Water Depth: 3.0m GPS Coord.: Same		Gear Deployment 2	$\frac{\text{Time:} 1040}{\text{Penetration depth:} 124}$
Water Depth: GPS Coord.:		Gear Deployment 3	Time: Penetration depth:
Water Depth: GPS Coord.:		Gear Deployment 4	Time: Penetration depth:
Water Depth: GPS Coord.:		Gear Deployment 5	Time: Penetration depth:
	Piston	corec	
Water Quality Readings:			
2 Feet Below Surface Water: Observations - Temp. (°C) 25.34 Conductivity 1.30 pH 7.55	DO (mg/L) Turbidity (NTU) Salinity (%)	7.02	TDS (g/L) 8. ORP (mV) 1.7
2 Feet Above Sediment Surface: Observations: Temp. (°C) 24.96 Conductivity 1.68 pH 7.53	DO (mg/L) Turbidity (NTU) Salinity (%)	6.71 0.98	TDS (g/L) / O. 3 ORP (mV) 55/8
NOTES			<u>Sampler</u>

2

Section 1

Sample Type:

Date: 7-9-04		Sample Number	18
Water Depth: 3.4m GPS Coord.: (66,4910,	Gear Deployment 1	Time: 1345 Penetration depth: 18 "	
Water Depth: Same GPS Coord.: Same	Gear Deployment 2	<u>Time: /350</u> Penetration depth: 15.5 "	
GPS Coord.: Sa WW Water Depth:	Gear Deployment 3	Penetration depth: 13.5	
GPS Coord.:	Gear Deployment 4	Penetration depth:	
Water Depth: GPS Coord.:	·	Time: Penetration depth:	
Water Depth:	Gear Deployment 5	Time:	
Gen Used $\frac{1}{1+1}$	- Riston Cover	Penetration depth:	! !
Water Quality Readings:	· · · · · · · · · · · · · · · · · · ·		
2 Feet Below Surface Water: Observation Temp. (°C) 25.7/ Conductivity 1.28 pH 7.63	ons - NML DO (mg/L) 7.98 Turbidity (NTU) 8 Salinity (%) 0.74	TDS (g/L) 7.9 ORP (mV) 37	
2 Feet Above Sediment Surface: Observ Temp. (°C) <u>25.67</u> Conductivity <u>1.30</u>	rations: Nove DO (mg/L) <u>8.04</u> Turbidity (NTU) <u>260</u> Salinity (%) <u>0.75</u>	TDS (g/L) 8.0 ORP (mV) 24	
NoTES:		and the second sec	

Station

s., 97

,ettter

Date 7-9-04		Sample Number Sed 19
Water Depth: 2.2 M GPS Coord.: 465067.8 81966	Gear Deployment I	Time: 1036 Penetration depth: 19 inches
Water Depth: Some GPS Coord.: Same	Gear Deployment 2	Time: 1045 Penetration depth: 16 inches
Water Depth: GPS Coord.:	Gear Deployment 3	Time: Penetration depth:
Water Depth: GPS Coord.:	Gear Deployment 4	Time: Penetration depth:
Water Depth: GPS Coord.:	Gear Deployment 5	Time: Penetration depth:
Great Used	istrn Corex f.	
Water Quality Readings:		ь.
2 Feet Below Surface Water: Observations - Temp. (°C) 25.19 Conductivity 7.56 pH 7.56	DO (mg/L) 7.88 Turbidity (NTU) 23-30 Salinity (%) -0.75	TDS (g/L) <u>8./</u> ORP (mV) <u>37</u>
2 Feet Above Sediment Surface: Observations: Temp. (°C) 25.12 Conductivity 1.40 pH 7.55	None DO (mg/L) 7.90 Turbidity (NTU) 56-100 Salinity (%) 0.77	TDS (g/L) <u>8.3</u> ORP (mV) <u>15</u>
		Ampier Attac

2 - Robert States

$\frac{1}{2} \frac{1}{1} \frac{1}$	<u>terina</u> p _{ere} sia dal di terina della di terina di <u>Anna di</u> peresta di terina	Sample Type: SCD. Sample Number
Water Depth: 3-5 M GPS Coord.: 664459.1	Gear Deployment 1	$\frac{\text{Time:}}{200}$ Penetration depth: 25
Water Depth: 3.5m GPS Coord.: Saw	Gear Deployment 2	Time: 135 Penetration depth: 15.54
Water Depth: GPS Coord.:	Gear Deployment 3	Time: Penetration depth:
Water Depth: GPS Coord.:	Gear Deployment 4	Time: Penetration depth:
Water Depth: GPS Coord.:	Gear Deployment 5	Time: Penetration depth:
Gen Used $\frac{1}{12}$	fiston corer	
Water Quality Readings:		
2 Feet Below Surface Water: Observations - Temp. (°C) 25.38 Conductivity 1.24 pH 7.55	None DO (mg/i.) 7.43 Turbidity (NTU) - Salinity (%) 0.71	TDS (g/L) 7.7 ORP (mV) 134
2 Feet Above Sediment Surface: Observation Temp. (°C) 25.20 Conductivity	ns: NoNe DO (mg/L) 7.09 Turbidity (NTU) Salinity (%) 0.86	TDS (g/L) <u>9.1</u> ORP (mV) <u>140</u>
NOTES:		Sampler Left Stop

Sample Type Sedimen

Date: 7-9-04		Sauple Number Sed 21
Water Depth: 4.95 m	Gear Deployment 1	Time: 1250
GPS Coord .: (664624.9	819685.3	Penetration depth: (0 inches
Water Depth: Same	Gear Deployment 2	Time: 1300
GPS Coord .: Sane	<u> </u>	Penetration depth: 16.75 in ches
	Gear Deployment 3	· · · · · · · · · · · · · · · · · · ·
Water Depth:		Time:
GPS Coord.:		Penetration depth:
	Gear Deployment 4	
Water Depth:		Time:
GPS Coord.:		Penetration depth:
Water Depth:	Gear Deployment 5	Time:
GPS Coord.:		Penetration depth:
Gen Usof	1,2- fistm cover	
Water Quality Readings:		
2 Feet Below Surface Water: Observation	ns- Norl	
Temp. (°C) <u>25.47</u>	DO (mg/L) 7.80	TDS (g/L) 7.5
Conductivity 1.2	Turbidity (NTU) 7-10	ORP (mV) 27
рн <u>7.69</u>	Salinity (%) 0.69	
2 Feet Above Sediment Surface: Observa	ntions: NOVE	
Temp. (°C) 25:14	DO (mg/L) 7,63	TDS (g/L) 8.7
Conductivity 1,40	Turbidity (NTU) (7-22	ORP (mV) 8
рн 7.64	Salinity (%) 0.8/	
·		
NOTES:		
and a second of the second		Sample: -
	national sectors and the sector sectors and sectors and the sector sectors and the sectors of the sectors of the	

 $(-\infty)$

Station.

. ج

Sample Type: Sedumen

Date: LTLUY		Sample Number Self A
Water Depth: 3.7 m GPS Coord.: 664763.1 81	Gear Deployment 1	Time: 1159 Penetration depth: 17 wickes
Water Depth: Same GPS Coord.: SAME	Gear Deployment 2	Time: 12:06 Penetration depth: 13.5 in Ches
Water Depth: GPS Coord.:	Gear Deployment 3	Time: Penetration depth:
Water Depth: GPS Coord.:	Gear Deployment 4	Time: Penetration depth:
Water Depth: GPS Coord.:	Gear Deployment 5	Time: Penetration depth:
· · · · · · · · · · · · · · · · · · ·	۵۵ / ۱۹۹۵ ۵ مغدا ۵ /۱۹۹۵ ۵ همسه بر میبود او است. بر پیدر بر میرو و میرو و میرو و میرو بر میرو بر م	
Gear Used.	1,2- fistor corer.	
Gene Used Water Quality Readings:	1,2- fistor corer	
F	<u>И бущ</u> DO (mg/L) <u>8.14</u> Turbidity (NTU) <u>37-47</u> Salinity (%) <u>0.71</u>	TDS (g/L) 7.7 ORP (mV) 2.8
Water Quality Readings: 2 Feet Below Surface Water: Observations - Temp. (°C)	NONE DO (mg/L) 8.14 Turbidity (NTU) 37-47 Salinity (%) 0.71	

ł

n Alfred and an an an an

Station

đ.

Station 23 712/04		Sample Type SED
Dates AUGU		Sample Nümber
Water Depth: 5.8m	- DISTORCOPT	<u>Тіте: / үүрО</u>
GPS Coord.: 663837.3	-819741.9	Penetration depth: 13,75"
Water Depth:	Gear Deployment 2	Time:
GPS Coord.:	_	Penetration depth:
Water Depth:	Gear Deployment 3	Time:
GPS Coord.:		Penetration depth:
	Gear Deployment 4	
Water Depth: GPS Coord.:	_	Time: Penetration depth:
	Gear Deployment 5	
Water Depth:	· · · · · · · · · · · · · · · · ·	Time:
GPS Coord.:		Penetration depth:
Genelsed Pistov	1 Coren	
Water Quality Readings:		
2 Feet Below Surface Water: Observations -	None	
Temp. (°C) 23.54 Conductivity 1.14	DO (mg/L) Turbidity (NTU)	$\frac{\text{TDS (g/L)}}{\text{ORP (mV)}}$
рн 7.74	Salinity (%) 0.64	
2 Feet Above Sediment Surface: Observations:		
Temp. (°C) 23.45 Conductivity 1,70	DO (mg/L) <u>6.50</u> Turbidity (NTU) <u>440</u>	$\frac{\text{TDS (g/L)} \textbf{9.}}{\text{ORP (mV)} \textbf{52}}$
рн <u>7,43</u>	Salinity (%) 0.89	
L		
NOTES		
		$\sim 2 f_{10}$
	na de la companya de La companya de la comp	samples AM All
**************************************	an an an an ann an an an an an an an an	

Station 29 Drite 71209		Sample Type: SED
	Gear Deployment 1	
Water Depth: 3.8m GPS Coord.: 664140,9	- 819 dear Deproyment 1 - 459 849, 9	$\frac{\text{Time: } / 3 \rightarrow}{\text{Penetration depth: } / 5 \iota''}$
Water Depth: 59 MC	. Gear Deployment 2	<u>Time:</u> 1355
GPS Coord .: Same		Penetration depth: 9.51
Water Depth: Same	Gear Deployment 3	Time: 1400
GPS Coord.: Same		Penetration depth: (0,75"
Water Depth: Sam	Gear Deployment 4	Time: /* 470 Penetration depth: 131
GPS'Coord.: Same		
Water Depth:	Gear Deployment 5	• Time:
GPS Coord.:		Penetration depth:
Gear Used	, 1 - Piston corex	
Water Quality Readings:	·····	······
2 Feet Below Surface Water: Observations - Temp. (°C) 25.57 Conductivity	Now 7.63 DO (mg/L) 7.63 Turbidity (NTU) 0.66 Salinity (%) 0.66	TDS (g/L) 7.7 ORP (mV) 171
2 Feet Above Sediment Surface: Observations: Temp. (°C) Conductivity pH	None DO (mg/L) 7.24 Turbidity (NTU) 7 Salinity (%) 6.87	TDS (g/L) 9. 4 ORP (mV) 18 3
NOTES:		Sampler LAD

· · · · • • • • • • • • • •

All And Sugar

The Advised and

and the second
	$\frac{Station}{Date} = \frac{25}{7 [204]}$		Sample Type ¹⁷ SBD Sample Number
* ~~	Water Depth: 5.75m GPS Coord.: 667398.3	Gear Deployment 1 - 819993. S	Time: / SVO Penetration depth: 121
	Water Depth: Same GPS Coord.: Same	Gear Deployment 2 —	Time: /SIS Penetration depth: /d//
	Water Depth: GPS Coord.:	Gear Deployment 3	Time: Penetration depth:
	Water Depth: GPS Coord.:	Gear Deployment 4 —	Time: Penetration depth:
	Water Depth: GPS Coord.:	Gear Deployment 5	Time: Penetration depth:
·	Genused: $1/2 - f_{i} \leq$	ton corer	
N.	Water Quality Readings:		
	2 Feet Below Surface Water: Observations - Temp. (°C) 25.42 Conductivity 1.26 pH 7.68	$\begin{array}{c c} h \text{ ore} \\ \hline DO (mg/L) & \hline 1.444 \\ \hline Turbidity (NTU) & \hline \\ Salinity (\%) & \hline 0.72 \\ \end{array}$	TDS (g/L) 7.7 ORP (mV) 167
	2 Feet Above Sediment Surface: Observations: Temp. (°C) 24.81 Conductivity 1.75 pH 7.43	Nove DO (mg/L) 6.27 Turbidity (NTU)	TDS (g/L) ORP (mV) 178
			Sampler - Septer

www.hare.

3

Sample Type:

Sampler: La/HQ

i

-

11.47% (j.

a wall

Date		Sample Number
Water Depth: 3.6 m GPS Coord.: 664635.4	Gear Deployment 1	Time: 0932 Penetration depth: /5.5'
Water Depth: Same GPS Coord.: Same	Gear Deployment 2	Time: 1045 Penetration depth: 1817
Water Depth: GPS Coord.:	Gear Deployment 3	Time:
Water Depth: GPS Coord.:	Gear Deployment 4	Time: Penetration depth:
Water Depth: GPS Coord.:	Gear Deployment 5	Time: Penetration depth:
Genused	histori correr	
Water Quality Readings:	· · · · · · · · · · · · · · · · · · ·	
2 Feet Below Surface Water: Observations Temp. (°C) 2.4.47 Conductivity 1.28 pH 7.58	- NOVL DO (mg/L) <u>6.96</u> Turbidity (NTU) Salinity (%) <u>0.75</u>	TDS (g/L) 7.9 ORP (mV) 207
$\frac{2 \text{ Feet Above Sediment Surface: Observation}}{2 \text{ Feet Above Sediment Surface: Observation}}$ $\frac{24.19}{1.58}$ $\text{Conductivity} 1.58$ $\text{pH} 7.54$	DO (mg/L) 6.84 Turbidity (NTU)	TDS (g/L) 9.7 ORP (mV) 217
NOTES:		

Station

and the second secon

the second second second second second

GM Tarrytown, NY Gear Deployment Log

. .

		e d
Station 2/ Date 7/13/04		Sample Type See
Water Depth: 6.8 m	Gear Deployment 1	Time: 1037
GPS Coord.: 663774.4	820326.0	Penetration depth:
Water Depth: Same	Gear Deployment 2	Time: 1055
Water Depth: Same GPS Coord.: Same	-	Penetration depth: (3 ¹ /2 ⁴
	– Gear Deployment 3	
Water Depth:	-	Time:
GPS Coord.:	_	Penetration depth:
Water Depth;	Gear Deployment 4	Time:
GPS Coord.:	_	Penetration depth:
Water Depth:	Gear Deployment 5	Time:
GPS Coord.:		Penetration depth:
	_ 	
$dearDsect = \frac{1}{2} - \frac{1}{2}$	iston corer	
$cestive = \frac{1}{2} - k$	iston corer	
Coesic Use $k_1 + k_2 + k_3 + k_4 +$	iston corer	
Water Quality Readings:		
	None DO (mg/L) 6.86	TDS (g/L) 7.6
Water Quality Readings: 2 Feet Below Surface Water: Observations -	None DO (mg/L) <u>6.86</u> Turbidity (NTU)	TDS (g/L) 7.6 ORP (mV) 144
Water Quality Readings: 2 Feet Below Surface Water: Observations - Temp. (°C)	None DO (mg/L) <u>6.86</u>	111. 1
Water Quality Readings: <u>2 Feet Below Surface Water: Observations -</u> Temp. (°C) <u>ZH.57</u> Conductivity <u>1.22</u>	<u>Лъщ</u> DO (mg/L) <u>6.86</u> Turbidity (NTU)	111. 1
Water Quality Readings: 2 Feet Below Surface Water: Observations - Temp. (°C) ZH.577 Conductivity I.222 pH 7.669 2 Feet Above Sediment Surface: Observations: Temp. (°C) 23.94	None DO (mg/L) <u>6.86</u> Turbidity (NTU) Salinity (%) <u>0.70</u> None DO (mg/L) <u>5.63</u>	ORP (mV) /44 TDS (g/L) /36
Water Quality Readings: 2 Feet Below Surface Water: Observations - Temp. (°C) <u>Z.4.57</u> Conductivity <u>1.22</u> pH <u>7.661</u> 2 Feet Above Sediment Surface: Observations: Temp. (°C) <u>23.94</u> Conductivity <u>2.40</u>	<u>None</u> DO (mg/L) <u>6.86</u> Turbidity (NTU) Salinity (%) <u>0.70</u> <u>None</u> DO (mg/L) <u>5.63</u> Turbidity (NTU) 280 6 70	ORP (mV) <u>144</u>
Water Quality Readings: 2 Feet Below Surface Water: Observations - Temp. (°C) ZH.577 Conductivity I.222 pH 7.669 2 Feet Above Sediment Surface: Observations: Temp. (°C) 23.94	None DO (mg/L) <u>6.86</u> Turbidity (NTU) Salinity (%) <u>0.70</u> None DO (mg/L) <u>5.63</u>	ORP (mV) /44 TDS (g/L) /36
Water Quality Readings: 2 Feet Below Surface Water: Observations - Temp. (°C) ZH.ST Conductivity 1.222 pH 7.66 2 Feet Above Sediment Surface: Observations: Temp. (°C) 23.99 Conductivity 2.40 pH 7.33	<u>None</u> DO (mg/L) <u>6.86</u> Turbidity (NTU) Salinity (%) <u>0.70</u> <u>None</u> DO (mg/L) <u>5.63</u> Turbidity (NTU) 280 6 70	ORP (mV) /44 TDS (g/L) /36
Water Quality Readings: 2 Feet Below Surface Water: Observations - Temp. (°C) <u>Z.4.57</u> Conductivity <u>1.22</u> pH <u>7.661</u> 2 Feet Above Sediment Surface: Observations: Temp. (°C) <u>23.94</u> Conductivity <u>2.40</u>	<u>None</u> DO (mg/L) <u>6.86</u> Turbidity (NTU) Salinity (%) <u>0.70</u> <u>None</u> DO (mg/L) <u>5.63</u> Turbidity (NTU) 280 6 70	ORP (mV) /44 TDS (g/L) /36

V 1/2

L:\laurie\gmtarrytown\gear deployment log

Station 28, 1	$\frac{2}{N-1}$, we define the comparison of the set of t	Sample Type
Date 7 1301		Sample Mumber
	Gear Deployment 1	
Water Depth: 0 7 m	_	Time: [13]
GPS Coord.: 0.64 149.5	5 820 288.1	Penetration depth: 8.J
Water Depth: Same	Gear Deployment 2	Time: //55
GPS Coord.: Same	<u></u>	Penetration depth: 15"
Water Depth:	Gear Deployment 3	Time:
GPS Coord.:		Penetration depth:
	Gear Deployment 4	· · · · · · · · · · · · · · · · · · ·
Water Depth:		Time:
GPS Coord.:		Penetration depth:
Water Depth:	Gear Deployment 5	Time:
GPS Coord.:		Penetration depth:
$c_{earthed} = 1.2 - 2$	Stan Coned	
Water Quality Readings:		
2 Feet Below Surface Water: Observations -	- none	
Temp. (°C) 24.53	DO (mg/L) 6.9-7.12	TDS (g/L) 7-5
Conductivity · VZ	Turbidity (NTU)	ORP (mV) / 6 4
рн <u>7.12</u>	Salinity (%)O.69	
	14.20	
2 Feet Above Sediment Surface: Observatio	- i - 1	TDS (g/L) / 3. 7
Temp. (°C) 23.7 Conductivity 2,73	DO (mg/L) 5.6	$\frac{\text{TDS } (g/L) / 3.7}{\text{ORP } (mV) / 76}$
pH 7.42	Salinity (%) <i>L</i> · . 34	
NOTES: An and a second se		
		Sampler:

.....

Station 71304		Sample Type: SED
Water Depth: 3.65	Gear Deployment 1	<u>Time: [3]5</u>
	Gear Deployment 2	Penetration depth: /0-5"
Water Depth: Same GPS Coord.: Same		Time: 1330 Penetration depth: 12"
Water Depth:	Gear Deployment 3	<u>Time:</u>
GPS Coord.:	Gear Deployment 4	Penetration depth:
Water Depth: GPS Coord.:		Time: Penetration depth:
Water Depth:	Gear Deployment 5	<u>Time:</u>
GPS Coord.:		Penetration depth:
Gent Used (1) - (1)	Piston corer	
Water Quality Readings:		
2 Feet Below Surface Water: Observations - Temp. (°C) 14.44 Conductivity 1.31 pH 7-74	hone DO (mg/L) 7.57 Turbidity (NTU)	TDS (g/L) 8-1 ORP (mV) 73
7-71 2 Feet Above Sediment Surface: Observations: Temp. (°C) 24.33 Conductivity 100 pH 7.55	<u>Моче</u> DO (mg/L) <u>Б. 7. 20</u> Turbidity (NTU) Salinity (%) <u>0. 94</u>	TDS (g/L) 9,7 ORP (mV) /80
Notes		
		Sampler: JAJUQ

· •

Ξ.

$\frac{Station}{Date} = \frac{30}{7/13/04}$	and a second s	Sample Type: See
Water Depth: 2.0m	Gear Deployment 1	/402
GPS Coord .: 664641,4	520258.5	Penetration depth:
Water Depth: Same	Gear Deployment 2	<u>Time: 1410</u>
GPS Coord .: Same		Penetration depth: /31'
Water Depth: Same	Gear Deployment 3	Time: 1415
GPS Coord.: Same		Penetration depth: 13.75'
Water Depth:	Gear Deployment 4	Time:
GPS Coord.:	`	Penetration depth:
Water Depth:	Gear Deployment 5	Time:
GPS Coord.:	·	Penetration depth:
}		
GeanUsed: <u>1727</u> 3	< liston coner.	
Water Quality Readings:		
,		
2 Feet Below Surface Water: Observations - Temp. (°C) $\overline{\mathcal{U} \cdot 36}$ Conductivity $1 \cdot 29$ pH $7 \cdot 72$	Mmc DO (mg/L) 7.57 Turbidity (NTU)	TDS (g/L) <u>8.0</u> ORP (mV) <u>175</u>
Temp. (°C) <u>74.36</u> Conductivity <u>1.29</u>	DO (mg/L) 7.57 Turbidity (NTU) Salinity (%) 0.74 IS: NONC	· · · · · · · · · · · · · · · · · · ·
Temp. (°C) <u>74.36</u> Conductivity <u>1.29</u> pH <u>7.72</u>	DO (mg/L) 7.57 Turbidity (NTU) Salinity (%) 0.74	· · · · · · · · · · · · · · · · · · ·
Temp. (°C) $\frac{74.36}{1.29}$ Conductivity 1.29 pH 7.72 2 Feet Above Sediment Surface: Observation Temp. (°C) 24.34 Conductivity 1.28	DO (mg/L) 7.57 Turbidity (NTU) Salinity (%) 0.74 DO (mg/L) 7.63 Turbidity (NTU)	ORP (mV) /77 TDS (g/L) 7.9

Station 3 Date 71304		Sample Type: SED Sample Number
Water Depth: 1.55m GPS Coord.: 66466.	Gear Deployment 1	Time: UHS Penetration depth: / U
Water Depth: Same GPS Coord.: Same	Gear Deployment 2	Time: 455 Penetration depth: 81/2"
Water Depth: GPS Coord.:	Gear Deployment 3	Time: Penetration depth:
Water Depth: GPS Coord.:	Gear Deployment 4	Time: Penetration depth:
Water Depth: GPS Coord.:	Gear Deployment 5	Time: Penetration depth:
Generated $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{2}$ $\frac{1}{1}$	ston corer	
Water Quality Readings: 2 Feet Below Surface Water: Observations -	None	
Z P cet Below Surface Water, Cosservations Temp. (°C) Z4.29 Conductivity 1.26 pH 7.70	DO (mg/L) 7.23 Turbidity (NTU) Salinity (%) 0.72	$\frac{\text{TDS}(g/L)}{\text{ORP}(mV)} \xrightarrow{7.8}$
2 Feet Above Sediment Surface: Observations: Temp. (°C) 24-23 Conductivity 1.26 pH 7.70	None DO (mg/L) 8.14 Turbidity (NTU)	TDS (g/L) 7-8 ORP (mV) 62
NOTES:		Sampler HALAO

and the second second second second

Station 22 Date $7/13/09$		Sample Type Seg Sample Number
Water Depth: B. IM	Gear Deployment 1	<u>Time: 1323</u>
GPS Coord.: QQT17C.S Water Depth: Same GPS Coord.: Same	Gear Deployment 2	<u>Penetration depth:</u> $0/2$ <u>Time:</u> (535)
Water Depth:	Gear Deployment 3	Penetration depth:
Water Depth: GPS Coord.:	Gear Deployment 4	Time: Penetration depth:
Water Depth: GPS Coord.:	Gear Deployment 5	Time: Penetration depth:
Gear Used: <u>17</u> 2-	Piston corer:	
Water Quality Readings:		
2 Feet Below Surface Water: Observations - Temp. (°C) 24-65 Conductivity 127 pH 7-69	Image: DO (mg/L) 7.15 Turbidity (NTU) 0.73	TDS (g/L) 7.9 ORP (mV) 134
2 Feet Above Sediment Surface: Observations: Temp. (°C) 23.79 Conductivity 7.773 pH 7.44	Nove DO (mg/L) 6.75.82 Turbidity (NTU)	TDS (g/L) <u>13.8</u> ORP (mV) <u>159</u>
		Sampler

あたりたいのないのない

** ***** *** *

W. See

sampler Ly/6Q

Date 7/14/04		Sample Type See 19
<i>t t t t</i>		
Water Depth: 3.6m	Gear Deployment 1	Time: 0835
GPS Coord.: 664 403.4	820679.9	Penetration depth: /7
Water Depth: Same	Gear Deployment 2	Time: 0837
GPS Coord.: Same		Penetration depth: 17
	Gear Deployment 3	
Water Depth:		Time:
GPS Coord.:		Penetration depth:
	Gear Deployment 4	
Water Depth:		Time:
GPS Coord.:		Penetration depth:
Water Depth:	Gear Deployment 5	Time:
GPS Coord.:		Penetration depth:
, 		
Gortlad	7-Pistm corer	
Citar Used	2-fiston correct.	
Gear Used	2-Piston corer	
ŗ	2-fiston corer	
Water Quality Readings: 2 Feet Below Surface Water: Observations -	none.	
Water Quality Readings: <u>2 Feet Below Surface Water: Observations</u> Temp. (°C)	- <u>None</u> DO (mg/L) <u>7.43</u>	TDS (g/L) 7.6
Water Quality Readings: 2 Feet Below Surface Water: Observations - Temp. (°C) <u>24.27</u> Conductivity <u>[-22</u>	<u>. Лотче.</u> DO (mg/L) <u>7.43</u> Turbidity (NTU)	TDS (g/L) 7.6 ORP (mV) (89
Water Quality Readings: <u>2 Feet Below Surface Water: Observations</u> Temp. (°C)	- <u>None</u> DO (mg/L) <u>7.43</u>	
Water Quality Readings: 2 Feet Below Surface Water: Observations - Temp. (°C) <u>24.27</u> Conductivity [-22 pH <u>7.66</u>	<u>None</u> DO (mg/L) <u>7.43</u> Turbidity (NTU) Salinity (%) <u>0.70</u>	
Water Quality Readings: 2 Feet Below Surface Water: Observations - Temp. (°C) <u>24.27</u> Conductivity <u>[-22</u>	- <u>None</u> DO (mg/L) <u>7.43</u> Turbidity (NTU) Salinity (%) <u>0.70</u>	
Water Quality Readings: 2 Feet Below Surface Water: Observations - Temp. (°C) 24.27 Conductivity [-22 pH 7.66 2 Feet Above Sediment Surface: Observation	- <u>Norve</u> DO (mg/L) <u>7.43</u> Turbidity (NTU) Salinity (%) <u>0.70</u> ns: VMSVE	ORP (mV) (89
Water Quality Readings: 2 Feet Below Surface Water: Observations - Temp. (°C) 24.27 Conductivity [-22 pH 7.66 2 Feet Above Sediment Surface: Observation Temp. (°C) 24.00 1.22	- <u>None</u> DO (mg/L) <u>7.43</u> Turbidity (NTU) Salinity (%) <u>0.70</u> ns: <u>Wone</u> DO (mg/L) <u>7.58</u>	ORP (mV) (89 TDS (g/L) 8.1
Water Quality Readings: 2 Feet Below Surface Water: Observations - Temp. (°C) 24.27 Conductivity [-22 pH 7.66 2 Feet Above Sediment Surface: Observation Temp. (°C) 24.00 Conductivity 1.32 Automatical Surface: Observation Conductivity 1.32	<u>None</u> DO (mg/L) <u>7.43</u> Turbidity (NTU) Salinity (%) <u>0.70</u> ns: <u>Vone</u> DO (mg/L) <u>7.58</u> Turbidity (NTU)	ORP (mV) (89 TDS (g/L) 8.1
Water Quality Readings: 2 Feet Below Surface Water: Observations - Temp. (°C) 24.27 Conductivity [-22 pH 7.66 2 Feet Above Sediment Surface: Observation Temp. (°C) 24.00 Conductivity 1.32 Automatical Surface: Observation Conductivity 1.32	<u>None</u> DO (mg/L) <u>7.43</u> Turbidity (NTU) Salinity (%) <u>0.70</u> ns: <u>Vone</u> DO (mg/L) <u>7.58</u> Turbidity (NTU)	ORP (mV) (89 TDS (g/L) 8.1

L:\laurie\gmtarrytown\gear deployment log

6413

マム

.,

Sampler

Station $\mathcal{F} \mathcal{F}$		Sample Type Step
Date 7 14 04		Sample Number
Water Depth: 2.65	Gear Deployment 1	<u>Time: ()900</u>
GPS Coord .: 069670.0	e \$20673.0	Penetration depth: 11.75"
Water Depth: Same	Gear Deployment 2	Time: 0905
GPS Coord.: Same		Penetration depth: /0"
	Gear Deployment 3	Timot
Water Depth: GPS Coord.:	_	Time: Penetration depth:
	Gear Deployment 4	
Water Depth:		Time:
GPS Coord :	·	Penetration depth:
Water Depth:	Gear Deployment 5	Time:
GPS Coord.:		Penetration depth:
*	· · · · · · · · · · · · · · · · · · ·	
Gen Used	Viston Conex	
F <i>·-·-</i> ·		
Water Quality Readings:		
2 Feet Below Surface Water: Observations -	None	
Temp. (°C) 24.07	DO (mg/L) 7.36	TDS (g/L) 7-8
$\frac{\text{Conductivity}}{7.59}$	Turbidity (NTU) Salinity (%)	ORP (mV) <u>197</u>
рн <u>,,,,,</u>	Salinity (%)	
2 Feet Above Sediment Surface: Observations:		
	none	
Temp. (°C) <u>24.03</u> Conductivity	DO (mg/L) 7.51 Turbidity (NTU)	TDS (g/L) 7.8 ORP (mV) 198

NOTES:

.

The second s

Station 3 5 Date: 7/14/04		Sample Type Sed
Water Depth: 2.45m GPS Coord.: 664670.6	Gear Deployment I	Time: 0935 Penetration depth: /6/2
Water Depth: GPS Coord.:	Gear Deployment 2	Time: Penetration depth:
Water Depth: GPS Coord.:	Gear Deployment 3	Time: Penetration depth:
Water Depth: GPS Coord.:	Gear Deployment 4	Time: Penetration depth:
Water Depth: GPS Coord.:	Gear Deployment 5	Time: Penetration depth:
Geartised and the set	iston correct	
Water Quality Readings:	· _ · _ · _ · _ · _ · _ · _ · _ · _ · _	
2 Feet Below Surface Water: Observations - 1 Temp. (°C) 24.10 Conductivity 1.23 pH 7.72	Nove 7.44 DO (mg/L) 7.44 Turbidity (NTU) 0.71 Salinity (%) 0.71	TDS (g/L) 7.7 ORP (mV) 90
2 Feet Above Sediment Surface: Observations: Temp. (°C) 24.03 Conductivity 1.26 pH 7.68	Nove DO (mg/L) 7.58 Turbidity (NTU)	TDS (g/L) 7.8 ORP (mV) 27-4995
		Sampler: AMAR

Stationer 36		Sample Type: SEE
Date 7/14/04		Sample Number
	Gear Deployment 1	
Water Depth: 2.4M		<u>Time: [027]</u>
GPS Coord.: 064 109.	_871017.4	Penetration depth: 1912"
Water Depth: Same	Gear Deployment 2	Time: 1033
GPS Coord .: Same	·	Penetration depth: 121/21
/ ////////////////////////////////////	Gear Deployment 3	T:
Water Depth: GPS Coord.:	<u> </u>	Time:
	Gear Deployment 4	Penetration depth:
Water Depth:		Time:
GPS Coord.:	_	Penetration depth:
Water Depth:	Gear Deployment 5	Time:
GPS Coord.:		Penetration depth:
Great Elsect	Pistrn Corer	
Gear Used	Pistm Conert	
Gen Used: $\sqrt{2}$	Piston Coner	
Water Quality Readings: 2 Feet Below Surface Water: Observations -	Piston Coner-	
Water Quality Readings: <u>2 Feet Below Surface Water: Observations</u> Temp. (°C) <u>24.17</u>	<u>Λογιε</u> DO (mg/L) <u>7.52</u>	TDS (g/L) 7.6
Water Quality Readings: 2 Feet Below Surface Water: Observations - Temp. (°C) 24.17 Conductivity 1.22	<u>ро (mg/L)</u> Turbidity (NTU)	$TDS (g/L) = \frac{7.6}{1.64}$ ORP (mV) = 1.64
Water Quality Readings: <u>2 Feet Below Surface Water: Observations</u> Temp. (°C) <u>24.17</u>	<u>Λογιε</u> DO (mg/L) <u>7.52</u>	
Water Quality Readings: 2 Feet Below Surface Water: Observations - Temp. (°C) 24.17 Conductivity 1.22 pH 7.72- 2 Feet Above Sediment Surface: Observations:	inone DO (mg/L) 7.52 Turbidity (NTU) Salinity (%) 0.70 NONE	ORP (mV)
Water Quality Readings: 2 Feet Below Surface Water: Observations - Temp. (°C) 24.17 Conductivity 1.22 pH 7.72 2 Feet Above Sediment Surface: Observations: Temp. (°C) 24.11	<u>P.SNe</u> DO (mg/L) 7.52 Turbidity (NTU) Salinity (%) 0.70 Nove DO (mg/L) 7.54	ORP (mV) 164 TDS (g/L) 7.7
Water Quality Readings: 2 Feet Below Surface Water: Observations - Temp. (°C) 24.17 Conductivity 1.22 pH 7.72- 2 Feet Above Sediment Surface: Observations:	inone DO (mg/L) 7.52 Turbidity (NTU) Salinity (%) 0.70 NONE	ORP (mV)
Water Quality Readings: 2 Feet Below Surface Water: Observations - Temp. (°C) 24.17 Conductivity 1.22 pH 7.72- 2 Feet Above Sediment Surface: Observations: Temp. (°C) 24.11 Conductivity 1.25	in one DO (mg/L) 7.52 Turbidity (NTU) Salinity (%) 0.70 Nore DO (mg/L) 7.54 Turbidity (NTU)	ORP (mV) / 6 / TDS (g/L) 7.7
Water Quality Readings: 2 Feet Below Surface Water: Observations - Temp. (°C) 24.17 Conductivity 1.22 pH 7.72- 2 Feet Above Sediment Surface: Observations: Temp. (°C) 24.11 Conductivity 1.25	in one DO (mg/L) 7.52 Turbidity (NTU) Salinity (%) 0.70 Nore DO (mg/L) 7.54 Turbidity (NTU)	ORP (mV) / 6 / TDS (g/L) 7.7
Water Quality Readings: 2 Feet Below Surface Water: Observations - Temp. (°C) 24.17 Conductivity 1.22 pH 7.72 2 Feet Above Sediment Surface: Observations: Temp. (°C) 24.11 Conductivity 1.25 pH 7.70	in one DO (mg/L) 7.52 Turbidity (NTU) Salinity (%) 0.70 Nore DO (mg/L) 7.54 Turbidity (NTU)	ORP (mV) 164 TDS (g/L) 7.7
Water Quality Readings: 2 Feet Below Surface Water: Observations - Temp. (°C) 24.17 Conductivity 1.27 pH 7.77 2 Feet Above Sediment Surface: Observations: Temp. (°C) 24.11 Conductivity 1.25 pH 7.70	in one DO (mg/L) 7.52 Turbidity (NTU) Salinity (%) 0.70 Nore DO (mg/L) 7.54 Turbidity (NTU)	ORP (mV) / 6 / TDS (g/L) 7.7

Station 37 Date: 1/14/04		Sample Type: SED
Water Depth: . 3m GPS Coord.: 044946.3	Gear Deployment 1	Time: 1055 Penetration depth: 5 ¹¹
Water Depth: Same GPS Coord.: Same	Gear Deployment 2 —	Time: // Ø Ø Penetration depth: $g'/_2$
Water Depth: Same GPS Coord.: Same	Gear Deployment 3	Time: //2/ Penetration depth: 91/2 (refreeze)
Water Depth: GPS Coord.:	Gear Deployment 4	Time: Penetration depth:
Water Depth: GPS Coord.:	Gear Deployment 5	Time: Penetration depth:
Gear Used	listm corre	
Water Quality Readings: 2 Feet Below Surface Water: Observations -	None	
Temp. (°C) 24.08 Conductivity 1.21 pH 7.76	DO (mg/L) 7.93 Turbidity (NTU)	$\frac{\text{TDS (g/L)}}{\text{ORP (mV)}} \frac{7.6}{7.7}$
2 Feet Above Sediment Surface: Observations: Temp. (°C) Conductivity pH	N/A Strullow DO (mg/L)	TDS (g/L) ORP (mV)
NOTES: Wetwas	to shallow to tak	e 2 readings samples: Hype

1.1

Station of the \lesssim 8 -bolt states and the matrix		Sample Type Sed
Date 7/14/04	n an Russen statementer en La Servició de Constantes	Sample Number
Water Depth: 2.15M	Gear Deployment 1	Time: /147
GPS Coord.: (064746.4	821 180.1	Penetration depth:
Water Depth: Same	Gear Deployment 2	Time: 1157
GPS Coord .: Same		Penetration depth: 13"
Water Depth: Same	-	Time: 1202
GPS Coord.: Same		Penetration depth: $3/4''$
	Gear Deployment 4	K
Water Depth:	<u> </u>	Time:
GPS Coord.:	_	Penetration depth:
	Gear Deployment 5	
Water Depth:	_ ·	Time:
GPS Coord.:	_	Penetration depth:
a	ρ	
Gear Used1,2,3	Piston coner	
Gear Used	Piston coner	
Gear Used $1, 2, 3 =$ Water Quality Readings:	Piston corex	
г		
Water Quality Readings: 2 Feet Below Surface Water: Observations -	None	
Water Quality Readings: <u>2 Feet Below Surface Water: Observations -</u> Temp. (°C) <u>24.18</u>	<u>Може</u> DO (mg/L) <u>7.54</u>	TDS (g/L) 2.7
Water Quality Readings: 2 Feet Below Surface Water: Observations - Temp. (°C) 24.18 Conductivity 1.23	<u>Моуче</u> DO (mg/L) <u>7.54</u> Turbidity (NTU)	TDS (g/L) <u>7.7</u> ORP (mV) <u>172</u>
Water Quality Readings: <u>2 Feet Below Surface Water: Observations -</u> Temp. (°C) <u>24.18</u>	<u>Може</u> DO (mg/L) <u>7.54</u>	
Water Quality Readings: 2 Feet Below Surface Water: Observations - Temp. (°C) 24.18 Conductivity 1.23 pH 7.69	None DO (mg/L) 7.54 Turbidity (NTU) Salinity (%) 0.71	
Water Quality Readings: 2 Feet Below Surface Water: Observations - Temp. (°C) 24.18 Conductivity 1.23	<u>Моуче</u> DO (mg/L) <u>7.54</u> Turbidity (NTU)	
Water Quality Readings: 2 Feet Below Surface Water: Observations - Temp. (°C) 24.18 Conductivity 1.23 pH 7.69 2 Feet Above Sediment Surface: Observations:	None DO (mg/L) 7.54 Turbidity (NTU) Salinity (%) 0.71 None DO (mg/L) 7.54 Turbidity (NTU) 0.71	ORP (mV) <u>172</u>
Water Quality Readings: 2 Feet Below Surface Water: Observations - Temp. (°C) 24.18 Conductivity 1.23 pH 7.69 2 Feet Above Sediment Surface: Observations: Temp. (°C) 23.98	None DO (mg/L) 7.54 Turbidity (NTU) Salinity (%) 0.71 None DO (mg/L) 7.54	ORP (mV) <u>172</u> TDS (g/L) <u>8.3</u>
Water Quality Readings: 2 Feet Below Surface Water: Observations - Temp. (°C) 24.18 Conductivity 1.23 pH 7.69 2 Feet Above Sediment Surface: Observations: Temp. (°C) 23.98 Conductivity 1.44	None DO (mg/L) 7.54 Turbidity (NTU) Salinity (%) 0.71 None DO (mg/L) 7.54 Turbidity (NTU) 7.54 Turbidity (NTU) 7.54 Turbidity (NTU) 7.54	ORP (mV) <u>172</u> TDS (g/L) <u>8.3</u>
Water Quality Readings: 2 Feet Below Surface Water: Observations - Temp. (°C) 24.18 Conductivity 1.23 pH 7.69 2 Feet Above Sediment Surface: Observations: Temp. (°C) 23.98 Conductivity 1.44 pH 7.62	None DO (mg/L) 7.54 Turbidity (NTU) Salinity (%) 0.71 None DO (mg/L) 7.54 Turbidity (NTU) 7.54 Turbidity (NTU) 7.54 Turbidity (NTU) 7.54	ORP (mV) <u>172</u> TDS (g/L) <u>8.3</u>
Water Quality Readings: 2 Feet Below Surface Water: Observations - Temp. (°C) 24.18 Conductivity 1.23 pH 7.69 2 Feet Above Sediment Surface: Observations: Temp. (°C) 23.98 Conductivity 1.44	None DO (mg/L) 7.54 Turbidity (NTU) Salinity (%) 0.71 None DO (mg/L) 7.54 Turbidity (NTU) 7.54 Turbidity (NTU) 7.54 Turbidity (NTU) 7.54	ORP (mV) <u>172</u> TDS (g/L) <u>8.3</u>
Water Quality Readings: 2 Feet Below Surface Water: Observations - Temp. (°C) 24.18 Conductivity 1.23 pH 7.69 2 Feet Above Sediment Surface: Observations: Temp. (°C) 23.98 Conductivity 1.44 pH 7.62	None DO (mg/L) 7.54 Turbidity (NTU) Salinity (%) 0.71 None DO (mg/L) 7.54 Turbidity (NTU) 7.54 Turbidity (NTU) 7.54 Turbidity (NTU) 7.54	ORP (mV) <u>172</u> TDS (g/L) <u>8.3</u>

T

Station:	31 Constant and	 A second constrained and the second seco	Sample Type: 24
Date:	7/14/04		Sample Number
Water Depth:	1.55m 664859.3	Gear Deployment I	Time: 1335 Penetration depth: 6" Ufersal
Water Depth: GPS Coord.:	Same Same	Gear Deployment 2	Time: 1345 Penetration depth: 134
Water Depth: GPS Coord.:	Same Same	Gear Deployment 3	Time: 135D Penetration depth: /04
Water Depth: GPS Coord.:		Gear Deployment 4	Time: Penetration depth:
Water Depth: GPS Coord.:		Gear Deployment 5	Time: Penetration depth:
Gear Used:	<u> </u>	fistion corer	
Water Quality		none	· · · · · · · · · · · · · · · · · · ·
2 Peet Below S Temp. (°C) Conductivity pH	24.71 1.17 7.73	DO (mg/L) 8.49 Turbidity (NTU) - Salinity (%) 0.67	TDS (g/L) 7.2 ORP (mV) 81
2 Feet Above S Temp. (°C) Conductivity pH	Sediment Surface: Observations:	NA DO (mg/L) Turbidity (NTU) Salinity (%)	TDS (g/L) ORP (mV)
NO FES	w what	165 Fos Shallow	to take 2 readings

1.00

4

2

ze:

. . 1

.

2.0

Date 7/15/04		Sample Type
Water Depth: 3.95m GPS Coord.: 666003.8	Gear Deployment 1	Time: 0835 Penetration depth: 8 ¹¹
Water Depth: Same GPS Coord.: Same	Gear Deployment 2	Time: U839 Penetration depth: 16.5
Water Depth: GPS Coord.:	Gear Deployment 3	Time: Penetration depth:
Water Depth: GPS Coord.:	Gear Deployment 4	Time: Penetration depth:
Water Depth: GPS Coord.:	Gear Deployment 5	Time: Penetration depth:
GeanUsed	12 - Aiston coner	
Water Quality Readings: 2 Feet Below Surface Water: Observations - Temp. (°C) 7.4.48 Conductivity 1.04 pH 7.57	Nove DO (mg/L) 7.36 Turbidity (NTU) 0.55 Salinity (%) 0.55	TDS (g/L) <u>6.9</u> ORP (mV) <u>Z18</u>
2 Feet Above Sediment Surface: Observations: Temp. (°C) 74.50 Conductivity 09 760 00 pH 7.60	<u>роуе</u> DO (mg/L) <u>7.43</u> Turbidity (NTU) Salinity (%) <u>0.67</u>	TDS (g/L) 6.8 ORP (mV) 2.26
NOTES:		0.11.40

Samplers

.....

10

.

i T

1

۰,

Station 4 Pate 1/15/04		Sample Type Sample Number
Water Depth: 3.85m	Gear Deployment 1	Time: 0925 Penetration depth: 312"
Water Depth: 3.95m GPS Coord.: 664852.	Gear Deployment 2 5 84 1 299 - 8	Time: 0935 Penetration depth: 12"
Water Depth: Same GPS Coord.: Same	Gear Deployment 3	Time: 0937 Penetration depth: 10.51
Water Depth: GPS Coord.:	Gear Deployment 4	Time: Penetration depth:
Water Depth: GPS Coord.:	Gear Deployment 5	Time: Penetration depth:
General Used $\frac{1}{2} + \frac{1}{2} + \frac$	- Piston corer	
Gear Used	<u>- fiston cores</u>	
F	<u>Prston</u> Corect	TDS (g/L) $6 \cdot 2$ ORP (mV) 208
Water Quality Readings: 2 Feet Below Surface Water: Observations - Temp. (°C) 24.91 Conductivity 1.0	<u>Лоте</u> DO (mg/L) <u>7. 4/9</u> Turbidity (NTU)	

TRANSPORT A MARK OF A DOMESTIC

ŝ

Station 42 Date 11504		Sample Type: Sec Sumple:Number
Water Depth: 4.2m	Gear Deployment 1 -842619.9	<u>Time: //00</u>
GPS Coord.: 0097117.7		Penetration depth: 3 ¹¹
Water Depth: Same GPS Coord.: Same	Gear Deployment 2	<u>Time: 1105</u>
GPS Coord.: Same	-	Penetration depth: 13"
	Gear Deployment 3	
Water Depth:	- · ·	Time:
GPS Coord.:	_	Penetration depth:
Water Depth:	Gear Deployment 4	Time:
GPS Coord.:	<u>-</u> . · .	Penetration depth:
Water Depth:	Gear Deployment 5	Time:
GPS Coord.:		Penetration depth:
Gear (1384	fiston corer	
Water Quality Readings:		
2 Feet Below Surface Water: Observations - Temp. (°C) 24.89 Conductivity 1.03 pH 7.63	None DO (mg/L) 7.51 Turbidity (NTU)	TDS (g/L) <u>6.4</u> ORP (mV) <u>199</u>
2 Feet Above Sediment Surface: Observations: Temp. (°C) 2.4.69 Conductivity 1.67 pH 7.70	Norre DO (mg/L) 7.93 Turbidity (NTU)	TDS (g/L) <u>6.7</u> ORP (mV) <u>207</u>
NOTES:		Sampler: HAMA

Sec. 1917

١

Station Date:	4 <u>3</u> 1/5/04		Sample Type: See
Water Depth:	3.7m	Gear Deployment 1	<u>//50</u>
GPS Coord.:	662062,5	844387.6	Penetration depth: 4300-13"
Water Depth:	nove	Gear Deployment 2	Time: 1457
GPS Coord.:	pore	- -	Penetration depth: 10/2
Watan Danthi		Gear Deployment 3	Time:
Water Depth: GPS Coord.:			Penetration depth:
[Gear Deployment 4	
Water Depth:		_	<u>Time:</u>
GPS Coord.:		·····	Penetration depth:
Water Depth:		Gear Deployment 5	Time:
GPS Coord.:		 .	Penetration depth:
		$\hat{\Lambda}$	
Geartised	<u> </u> ₁ 2-	liston corer	
Geat Used Water Quality		<u>Piston corer</u>	
Water Quality	Readings:	NSTEN COLOR NONE	TDS (g/L) <u>6.6</u> ORP (mV) <u>173</u>
Water Quality 2 Feet Below S Temp. (°C) Conductivity pH	Readings: Surface Water: Observations - 2.4.82 1.06	<u>Може</u> DO (mg/L) <u>7. Z.5.</u> Turbidity (NTU)	

• 90 K.

Sample Type:

- Sample Number

Water Depth: 3.15 GPS Coord.: 6634	<u>Gear Dep</u> 39.3 845143	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \underline{\text{Time:}} \\ \underline{\text{Compared}} \end{array} \end{array} \\ \bullet \begin{array}{c} \underline{\text{Time:}} \\ \underline{\text{Penet}} \end{array} \end{array}$	1343 ration depth: 0.51
Water Depth: Same	Gear Dep	ployment 2 <u>Time</u> :	1347
Water Depth: Same GPS Coord.: Same		Penet	ration depth: 12
Water Depth:	Gear Dep	oloyment 3 <u>Time</u> :	·
GPS Coord.:		Penet	ration depth:
Water Depth:	Gear Dep	oloyment 4	:
GPS Coord.:		Penet	tration depth:
Water Depth:	Gear Dep	ployment 5 <u>Time</u>	:
GPS Coord.:		<u>Penet</u>	tration depth:
Qear Used	1,2 - Piston Cores		

Water Quality Readings:		
2 Feet Below Surface Water: Observations - Temp. (°C) 2.5.34 Conductivity 1.03 pH 7.70	Mone DO (mg/L) 7.29 Turbidity (NTU) 53	TDS (g/L) 6- 9 ORP (mV) 17.5
$\begin{array}{c c} \hline 2 \text{ Feet Above Sediment Surface: Observations:} \\ \hline \text{Temp. (°C)} & & & \hline 2 & \hline 5 & \cdot 19 \\ \hline \text{Conductivity} & & & \hline 1 & \cdot 03 \\ \hline \text{Conductivity} & & & \hline 7 & \cdot 6 & \hline 2 \\ \hline \text{pH} & & & & \hline 7 & \cdot 6 & \hline 2 \\ \hline \end{array}$	(NML) DO (mg/L) 8.07 Turbidity (NTU) Salinity (%) 0-58	TDS (g/L) 6.9 ORP (mV) 18
NOTES		

Sampler /

A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR A CONTRAC

Station

Dat

4 14

4

$\frac{\text{Station}}{\text{Date}} = \frac{45}{7/1509}$		Sample Type: Sch Sample Number
Water Depth: 3.15m GPS Coord.: 66.3914.2	Gear Deployment 1	Time: Penetration depth:
Water Depth: Same GPS Coord.: Same	Gear Deployment 2	Time: 1423
Water Depth: GPS Coord.:	Gear Deployment 3	Time: Penetration depth:
Water Depth:	Gear Deployment 4	Time:
GPS Coord.: Water Depth: GPS Coord.:	Gear Deployment 5	Penetration depth: Time: Penetration depth:
	Piston coner	
Water Quality Readings:		
ŗ	<u>Мом</u> DO (mg/L) 7.88 Turbidity (NTU) Salinity (%) <u>0.58</u>	TDS (g/L) <u>6-4</u> ORP (mV) <u>172</u>
Water Quality Readings: 2 Feet Below Surface Water: Observations - Temp. (°C) Conductivity	<u>Мом</u> DO (mg/L) 7.88 Turbidity (NTU) Salinity (%) 0.58	

1.50

ARCADIS

Appendix B

Sampling Logs 2006

Station	SED100			Sample Type Sediment Sampling					
Equipment	Ponar/Lexane	Sampling Personnel D. Rigg, P. Dougher, J. Gutkowski							. Gutkowski
Date	9/20/2006					Weather	Sunny, 65F		
SEDIMENT S	AMPLE								
v	/ater Depth (ft)	6.5			Sa	mple Time	9:05am		
Sai	mple Depth (ft)	0.5				Sample ID	SED100		
	Description	On a soldition of							
	Description				•				Plants(submerged eel
		grass). Medium	n sand, som	e fine sand/	gravel. No o	rganic matte	r. One muss	sel from BB	R1, one from BBR3
Cherr	ical Analysis	2 0-6" Lexan co	ores for sele	ct TAL meta	ls/TOC				
	-	3 Ponar grabs							
0	ther Analysis	2 Ponar grabs	for toxicity a	nd grain, 1 e	extra ponar f	or tissue obs	ervations		
	-								
WATER QUA	LITY								
Sample ID	SED100				S	ample Time	9:05am		
Depth	DO	Temperature	Salinity	ORP	рН	Sp. Cond.	Turbidity	Flow	Observations
	(mg/l)	(° C)	(%)	(mV)		(mS/cm)	(NTU)	(ft/s)	
Surface	8.84	23.1	0.5	256	7.81	8.68	20.3	0.01	none
Bottom	No Data	No Data	No Data	No Data	No Data	No Data	No Data	No Data	none
	CORE Water Depth etration Depth gth Recovered	N/A				Sa	mple Time Sample ID		
			bservation				Analysis		
Depth (in)		Description/O	Soor valion						
Depth (in) N/A		Description/O	Seel valien						
		Description/O							
Depth (in) N/A		Description/O							
		Description/O							
		Description/O							
		Description/O							

SAMPLE DESTINATION

Laboratory: Columbia Analytical

Station	SED101						Sediment Sa			
Equipment	Ponar/Lexane				Sampling	Personnel	D. Rigg, P. I	D. Rigg, P. Dougher, J. Gutkowski		
Date	9/20/2006					Weather	Sunny, 65F			
SEDIMENT S	AMPLE									
w	ater Depth (ft)	9.9			Sa	mple Time	10:00am			
	nple Depth (ft)					Sample ID	SED101			
						-				
	Description	removed 1 mus								
		approximately	50% fine/ m	edium sand	and 50% s	ilt. Retained	as SED101 (0-6)B (n=3)	
		2 0-6" Lexan co			als/TOC					
		3 Ponar grabs								
0	ther Analysis	2 Ponar grabs	for toxicity a	ind grain, 1 e	extra ponar	for tissue ob	servations			
VATER QUA					-					
ample ID	SED101				5	Sample Time	10:00am			
Dawth	DO	Tamaanatuma	Calinity	000		Cm. Comd	Truckisliter	Flow	Ohaamustiana	
Depth	DO (mg/l)	Temperature (° C)	Salinity	ORP (mV)	рН	Sp. Cond. (mS/cm)	Turbidity (NTU)	Flow (ft/s)	Observations	
Surface	(mg/l)	22.9	<u>(%)</u> 0.5	235	7.04	8.79	15.1	(= -)		
Surface Bottom	9.69 9.54	22.9	0.5	235	7.91 7.88	8.79	15.1	-0.08 -0.04	none	
Bottom	9.54	23	0.5	223	1.00	6.95	14.3	-0.04	none	
	Water Depth etration Depth gth Recovered	N/A	bservation			Sa	ample Time Sample ID Analysis			
/A							, ,			
OMMENTS										
	STINATION	lution								
elivered Via:	Columbia Anal	iyucal		Field S	ampling C	oordinator	Dovo Picc			
envered via:	Feu EX			Field S	amping Co	oordinator:	Dave Rigg			

	SED102 Ponar/Lexane						Sediment S D. Rigg, P.		Gutkowski
	9/20/2006				oumphing		Sunny, 65F		
Sar Chem Biolog	Vater Depth (ft) mple Depth (ft) Description nical Analysis gical Analysis		ores for sele for benthic c	edges. ct TAL meta community	e relic shells		SED102 inders		
UWATER QUA Sample ID		2 Ponar grabs		nd grain, T		ample Time			
Depth	DO (mg/l)	Temperature (° C)	Salinity (%)	ORP (mV)	рН	Sp. Cond. (mS/cm)	(NTU)	Flow (ft/s)	Observations
Surface	9.41	23.3	0.4	209	7.87	8.12	13.8	-0.08	none
Bottom	18.9	23.1	0.5	202	7.81	10.2	13.6	-0.05	none
	Water Depth etration Depth gth Recovered	N/A				Sa	ample Time Sample ID		
Depth (in)		Description/O	bservation				Analysis		
N/A		Description/or	bool valion				Analysis		
COMMENTS									
SAMPLE DE		lution							
Delivered Via:	: <u>Columbia Ana</u> : Fed Ex	iyulal		Field Sa	ampling Co	oordinator:	Dave Rigg		

Station	SED103				Sa	mple Type	Sediment Sa	ampling	
	Ponar/Lexane				Sampling	Dougher, J.	Gutkowski		
Date	9/20/2006					Weather	Sunny, 65F		
	AMPLE /ater Depth (ft) nple Depth (ft)				Sa	imple Time Sample ID			
	Description	95% silt with 59							
		2 0-6" Lexan co	ores for sele	ct TAL meta		2.00 (0 0)2	()		
		3 Ponar grabs			extra ponar	for tissue ob	servations		
WATER QUA Sample ID	LITY SED103				s	ample Time	12:00pm		
Depth	DO (mg/l)	Temperature (° C)	Salinity (%)	ORP (mV)	рН	Sp. Cond. (mS/cm)	Turbidity (NTU)	Flow (ft/s)	Observations
Surface	9.82	23.2	0.5	237	7.93	18.5	15.1	-0.34	none
Bottom	9.48	23	0.6	236	7.87	11.1	15	-0.23	none
	ORE Water Depth etration Depth gth Recovered	10.0				Sa	mple Time Sample ID		
Depth (in)		Description/O	bservation				Analysis		
0-6	Dark gray/brov	vn very soft silt,		ace fine san	d, wet.		Select metal	ls/TOC	
6 - 34		vn soft clayey si	t, trace orga	nics (shells)					
34 - 95	Dark gray/brov	vn clayey silt							
COMMENTS	Geochronology	y core was also	collected:						
0 - 17		vn soft silt, little i			s (roots, sh	ells), trace cla	ay, wet.		
17 - 86	Dark brown/bla	ack clayey silt, tr	ace organic	s (shells)					
Cesium - 137	, Lead - 210 an	alyses were req	uested						
SAMPLE DE Laboratory: Delivered Via:	Columbia Anal	ytical, Mass Spe	ec	Field Sa	ampling C	pordinator:	Dave Rigg		

	SED104 Ponar/Lexane				. Gutkowski				
Date	9/21/2006						Sean Madd		EC)
						Weather	Windy, 65 F		
	AMPLE ater Depth (ft) nple Depth (ft)				Sa	ample Time Sample ID			
	Description	SED104(NEW) No mussels obs		nd 40% coa	rse organic	material. Re	lic shells of o	oyster and	zebra mussel.
Chem	ical Analysis	2 0-6" Lexan co	ores for sele	ct TAL meta	als/TOC				
		3 Ponar grabs f							
Ot	her Analysis	2 Ponar grabs f	or toxicity a	nd grain, 1	extra ponar	for tissue ob	servations		
VATER QUA Sample ID	SED104				s	Sample Time	1:15		
•						-			
Depth	DO (mm m/l)		Salinity	ORP	рН	Sp. Cond.	-		Observations
Surface	(mg/l) 9.97	(° C) 22.1	<u>(%)</u> 0.5	(mV) 189	8.06	(mS/cm) 9.5	(NTU) 11.7	(ft/s) 0.6	none
Bottom	8.88	22.1	0.5	186	8.00	9.5	15.1	0.6	none
	ORE Water Depth etration Depth gth Recovered	10.0				Sa	mple Time Sample ID		
epth (in)		Description/Ol	oservation				Analysis		
- 36	Dark brown/bla	ack very soft silt,		and.			Select meta	ls/TOC	
6 - 88	Dark gray clay	ey silt, trace fine	sand, trace	e organics (s	shells)				
		as 29 feet, much	deeper. M	oved. NYS	DEC concu	irrence.			
	y core was als		organica /-	hollo) trocs	fina ta ma	dium acad to			
<u>- 25</u> 5 - 56	Dark brown/bla	ack soft silt, little ack clayey silt, tr	ace organics (S	rielis), trace	The to the	uium sanu, tra	ace clay.		
		alyses were req							
Cesium - 137	·	alyses were req	uested						

Laboratory: Columbia Analytical, Mass Spec Delivered Via: Fed Ex

Field Sampling Coordinator: Dave Rigg

Equipment	SED105 Ponar/Lexane 9/21/2006			Sample TypeSediment SamplingSampling PersonnelD. Rigg, P. Dougher, J. GutkowskiOversightSean Madden (NYSDEC)WeatherWindy, 65 F							
	AMPLE /ater Depth (ft) nple Depth (ft)				Sa	ample Time Sample ID					
	Description										
Biolog	ical Analysis	2 0-6" Lexan co 3 Ponar grabs 1 2 Ponar grabs 1	for benthic c	ommunity		r for tissue ob	servations				
WATER QUA Sample ID	SED105				\$	Sample Time	2:15				
Depth	DO (mg/l)	Temperature (° C)	Salinity (%)	ORP (mV)	рН	Sp. Cond. (mS/cm)	Turbidity (NTU)	Flow (ft/s)	Observations		
Surface	10.23	22.3	0.5	196	7.96	9.6	17.7	1.16	none		
Bottom	9.94	22.2	0.5	185	7.89	9.7	18.7	1.08	none		
Core Len	Water Depth etration Depth gth Recovered	N/A				Sa	mple Time Sample ID				
Depth (in)		Description/O	bservation				Analysis				
N/A											
COMMENTS		as 28', much dee y NYSDEC over		ar-site locat	ions. Rec	ommend mov	ing location t	o new spo	t.		
SED105(NEV	V): 75% silt wit	h 10% fine orga	nic and 10%	silt. 5% sh	ells						
	some small sh	een producing g	lobs								
	collected 2 mu	ssels with clam	rake. Retair	ned for analy	/sis as SE	D105(0-6) BT	(n=2)				
SAMPLE DE Laboratory: Delivered Via:	Columbia Anal	ytical		5.110		oordinator:					

Equipment	SED106 Ponar/Lexane 9/20/2006				Sa Sampling	ample Type Personnel Weather	Sediment S D. Rigg, P. Sunny, 65F	Dougher, J.	Gutkowski
	/ater Depth (ft) mple Depth (ft)		% very fine o No clams ir	organic. Sor n remaining (ne relic she	ample Time Sample ID ells. Retained as	SED106	6)BT (n=1)	
Chen Biolog C									
WATER QUA Sample ID					s	ample Time	1:00pm		
Depth	DO (mg/l)	Temperature (° C)	Salinity (%)	ORP (mV)	рН	Sp. Cond. (mS/cm)	Turbidity (NTU)	Flow (ft/s)	Observations
Surface	10.28 9.77	23.2 23	0.5	226 222	7.96 7.9	8.7 10.1	15.7 15.4	No Data	none
Core Len	Water Depth etration Depth gth Recovered	N/A N/A	ha a musti a m			Sa	ample Time Sample ID		
Depth (in) N/A		Description/O	bservation				Analysis		
SAMPLE DE Laboratory Delivered Via	Columbia Anal	lytical		Field Sa	ampling Co	oordinator:	Dave Rigg		

Equipment Date SEDIMENT S	ater Depth (ft) nple Depth (ft)	16.7 0.5 Recovery: 7cm	. Silt and lot collected- 2	s of clay (re deep bodie	Sampling Sa ason for sha	Weather Imple Time Sample ID allow recover	D.Buys, J.G R.Kapp, T.M Overcast, U white caps in 15:30 SED107 y). No veget:	utkowski, lerrall, S.C pper 60's l n afternoo ation obse	F, windy (S to N), n
Chem Biolog O									
WATER QUA Sample ID					s	ample Time	15:30		
Depth	DO (mg/l)	Temperature (° C)	Salinity (%)	ORP (mV)	рН	Sp. Cond. (mS/cm)	Turbidity (NTU)	Flow (ft/s)	Observations
Surface	10.58	22.3	0.8	237	8.02	13.3	10.5	-0.5	none
Bottom	10.43	22.3	0.8	215	8.01	13.4	14.2	-0.45	none
Core Leng	ORE Water Depth etration Depth gth Recovered	N/A N/A					mple Time Sample ID		
Depth (in) N/A		Description/O	bservation				Analysis		
COMMENTS									
SAMPLE DE	STINATION Columbia Anal	ytical				pordinator:	Dave Rigg		

Station	SED108			Sample Type Sediment Sampling						
Equipment	Ponar/Lexane				Sampling	Personnel	D. Rigg, J. C	Gukowski, A	A. Baird,	
Date	9/18/2006						P. Dougher,	R. Kapp		
						Weather	Sunny, 70 F			
SEDIMENT	SAMPLE									
v	Vater Depth (ft)	13.8			Sa	ample Time	14:30			
		0.5				Sample ID				
	P									
	Description	sediment: clay/	silt. no odor/	sheen						
	• • •									
Cher	nical Analysis	2 0-6" Lexan co	ores for seler	rt TAL meta	ls/TOC					
	-	3 Ponar grabs t			10/100					
		2 Ponar grabs			wtro popor	for tionup ob	onvotiona			
C C	Analysis	2 Ponar grabs	or toxicity ar	iu grain, i e	extra ponar		servations			
WATER QU										
Sample ID	SED108				5	Sample Time	14:30			
Danth		Tommonotume	Calinity	000		Cm. Comd	Truckisliter	Flow	Ohaamvatiana	
Depth	DO	Temperature	Salinity	ORP	рН	Sp. Cond.	-	Flow	Observations	
	(mg/l)	(° C)	(%)	(mV)		(mS/cm)	(NTU)	(ft/s)		
Surface Bottom	10.17 9.85	24.2 23.8	0.5 0.5	266 254	7.72 7.62	8.22 8.42	11.5 10.3	0.59 0.33	none	
SEDIMENT	Water Depth	N/A				Sa	mple Time	N/A		
Core Per	netration Depth						Sample ID			
	gth Recovered						oumpie ib	11/7 (
COLE TEL	igin Necovered									
Depth (in)		Description/O	hearvation				Analysis			
N/A		Description/or	USE Valion				Analysis			
COMMENTS	5									
SAMPLE DE	STINATION									
Laboratory										
	: Columbia Ana	lytical								
elivered Via	-	lytical		Field S	ampling C	oordinator:	Dave Rigg			

Equipment Date SEDIMENT S	ater Depth (ft) nple Depth (ft)	13.3 0.5 Recovery: 10cr	m. Mostly sil	t. 1 biota tis:	Sampling Sa Sue sample	Weather	D.Buys, J.G R.Kapp, T.M Overcast, U white caps i 14:00 SED109 deep-bodied	utkowski, lerrall, S.C pper 60's n afternoo	F, windy (S to N), n
		1 deep-bodied	clam remov	ed for tissue	sample. N	o vegetation	observed in	dredges.	
Chemical Analysis 2 0-6" Lexan cores for select TAL metals/TOC Biological Analysis 3 Ponar grabs for benthic community Other Analysis 2 Ponar grabs for toxicity and grain, 1 extra ponar for tissue observations									
WATER QUA Sample ID	LITY SED109				s	ample Time	14:00		
Depth	DO (mg/l)	Temperature (° C)	Salinity (%)	ORP (mV)	рН	Sp. Cond. (mS/cm)	Turbidity (NTU)	Flow (ft/s)	Observations
Surface	10.61	22.6	0.7	274	8.01	12.9	9.9	-0.88	none
Bottom	10.26	22.5	0.8	263	7.98	13.5	11.2	-0.00	none
Core Len	Water Depth etration Depth gth Recovered	N/A	hearvation				Analysis		
Depth (in) N/A							Anarysis		
SAMPLE DE Laboratory: Delivered Via:	Columbia Anal	ytical		Field S	ampling Co	oordinator:	Dave Rigg		

Station	SED110				Sa	mple Type	Sediment Sa	ampling	
	Ponar/Lexane				Sampling	Personnel	D. Rigg, J. C	Jukowski,	A. Baird,
Date	9/18/2006						P. Dougher,	R. Kapp	· · · ·
						Weather	Sunny, 70 F		
SEDIMENT S									
	ater Depth (ft)					mple Time			
Sar	nple Depth (ft)	0.5				Sample ID	SED110		
	Description	clay with some	silt; no odoi	r/sheen					
Cham	ical Analysia	2 0-6" Lexan co	ree for colo	ot TAL moto					
		3 Ponar grabs							
BIOIOU	ther Analysis	2 Ponar grabs	for toxicity a	nd arain 1	ovtra nonar	for tissue of	convotions		
0	uner Analysis	2 FUIIal graus	IOT LOXICITY A	nu grain, i e	extra portar		servations		
WATER QUA									
	SED110				e	ample Time	15.20		
Sample ID	SEDTIO				3	ample Time	15.50		
Depth	DO	Temperature	Salinity	ORP	pН	Sp. Cond.	Turbidity	Flow	Observations
Deptil	(mg/l)	(° C)	(%)	(mV)	P11	(mS/cm)	(NTU)	(ft/s)	Observations
Surface	9.93	24.2	0.5	273	7.98	8.6	10.8	0.04	none
Bottom	9.83	24.1	0.5	260	7.99	8.6	12.5	0.04	none
	•								
	CORE Water Depth etration Depth gth Recovered	N/A				Sa	ample Time Sample ID		
Donth (in)		Decerintian/O	hoometion				Analysia		
Depth (in) N/A		Description/O	oservation				Analysis		
IN/A									
L									
COMMENTS									
COMMENTO									
SAMPLE DE	STINATION								
-	Columbia Anal	vtical							
Delivered Via:		yudu		Field S	amnling Cr	oordinator:	Dave Rigg		
Juivereu via.					ampning CC		Dave Rigg		

Station	SED111				Sa	ample Type	Sediment S	ampling	
	Ponar/Lexane								P.Doughee, A.Baird
	9/14/2006						S.O'Neil	,	0
						Weather		ain, white c	aps on river with
							1-2 foot swe		•
SEDIMENT S	SAMPLE								
	Vater Depth (ft)	17.5			Sa	ample Time	8:15		
	mple Depth (ft)					Sample ID			
	• • • •					•			
	Description	Recovery: 10cr	n. Mostly sil	t. No clams	observed, r	no tissue san	ple collected	l	
	•	No vegetation of							ver.
				<u> </u>					
Cherr	nical Analysis	2 0-6" Lexan co	ores for sele	ct TAL meta	ls/TOC				
	-	3 Ponar grabs							
-		2 Ponar grabs			extra ponar	for tissue ob	servations		
				<u> </u>					
WATER QUA									
Sample ID					ç	Sample Time	8·15		
oup.o .2	010111				-				
Depth	DO	Temperature	Salinity	ORP	pН	Sp. Cond.	Turbidity	Flow	Observations
	(mg/l)	(° C)	(%)	(mV)	P	(mS/cm)	(NTU)	(ft/s)	
Surface	10.7	22.1	0.8	176	7.99	13.2	9.8	-0.7	none
Bottom	9.8	21.7	0.8	163	8.03	13.4	10.2	-0.86	none
	Water Depth etration Depth gth Recovered	N/A				Si	ample Time Sample ID		
Depth (in)		Description/O	bservation				Analysis		
N/A									
COMMENTS									
SAMPLE DE									
Laboratory:	Columbia Ana	lytical							

	SED112				Sa	ample Type	Sediment S	ampling	
Equipment	Ponar/Lexane				Sampling	Personnel			P.Doughee, A.Baird
Date	9/13/2006						R.Kapp, T.M	/lerrall, S.C)'Neil
						Weather			F, windy (S to N),
							white caps i	n afternooi	n
SEDIMENT S	SAMPLE								
W	ater Depth (ft)	13.5			Sa	ample Time	10:45		
Sar	nple Depth (ft)	0.5				Sample ID	SED112		
	Description	Recovery- 13ci	m. Mostly sil	t with leaf litt	ter, no veg	etation obse	rved in dredg	es. 1 biota	tissue
	-	sample collecte	ed- 3 deep b	odied clams	(1-2 inche	s). 1 deep-b	odied clam re	moved for	tissue sample
		*Description co							
Cherr	ical Analysis	2 0-6" Lexan co	ores for sele	ct TAL meta	ls/TOC				
Biolog	ical Analysis	3 Ponar grabs	for benthic c	ommunity					
		2 Ponar grabs			extra ponar	for tissue ob	servations		
	•			0					
WATER QUA	LITY								
Sample ID	SED112				5	Sample Time	1 0:45		
•						•			
Depth	DO	Temperature	Salinity	ORP	рH	Sp. Cond.	Turbidity	Flow	Observations
•	(mg/l)	(° C)	(%)	(mV)	•	(mS/cm)	(NTU)	(ft/s)	
Surface	10.05	22.3	0.7	287	7.99	12.9	9.2	-0.12	none
Bottom	10.16	21.8	0.8	281	7.97	13.2	9.9	-0.35	none
	CORE Water Depth etration Depth gth Recovered	N/A				Si	ample Time Sample ID		
Depth (in)		Description/O	bservation				Analysis		
N/A									
-									
COMMENTS	2 species m	nussels/ clams i							
		with mostly squ	uare/round b	ody (similar	dimension	s) and angul	ar side. The	other smal	I, flat and
		whitish/ purple	like shells se	een yesterda	ay.				
SAMPLE DE	STINATION								
	Columbia Anal	ytical							
Delivered Via:	Fed Ex			Field Sa	ampling C	oordinator:	Dave Rigg		

Equipment	SED113 Ponar/Lexane 9/13/2006						D.Buys, J.G R.Kapp, T.M	utkowski, lerrall, S.C pper 60's	F, windy (S to N),
		4.6			Sa	mple Time	10:00		
Sar	nple Depth (ft)	4.6 0.5				Sample ID	SED113		
	Description	Recovery: 9cm 1 sprig of wild o							sue sample collected.
Biolog	ical Analysis	2 0-6" Lexan co 3 Ponar grabs 2 Ponar grabs	for benthic c	community		for tissue ob	servations		
WATER QUA Sample ID	LITY SED113				s	ample Time	10:00		
Depth	DO (mg/l)	Temperature (° C)	Salinity (%)	ORP (mV)	рН	Sp. Cond. (mS/cm)	Turbidity (NTU)	Flow (ft/s)	Observations
Surface	9.63	21.7	0.8	245	7.92	13.6	12.3	-0.11	none
Bottom	9.54	21.7	0.8	237	7.91	13.7	11.1	-0.2	none
	ORE Water Depth etration Depth gth Recovered	N/A	bservation			Sa	mple Time Sample ID Analysis		
N/A		-							
COMMENTS									
SAMPLE DE Laboratory: Delivered Via:	Columbia Anal	ytical		Field Sa	ampling Co	oordinator:	Dave Rigg		
			_						

Station	SED114				Sa	mple Type	Sediment S	ampling		
	Ponar/Lexane						D.Buys, J.Gutkowski, P.Doughee, A.Baird			
	9/13/2006				5		R.Kapp, T.Merrall, S.O'Neil			
						Weather			F, windy (S to N),	
							white caps i			
SEDIMENT	SAMPLE									
v	Vater Depth (ft)	5.9			Sa	mple Time	9:15			
Sa	mple Depth (ft)	0.5				Sample ID	SED114			
	Description	Recovery: 75%								
		No organisms i	in one 5mm	sieve-no tiss	sue sample o	collected. No	o vegetation	observed i	n dredges.	
Char	niaal Analysia	2.0.6" Loven e	araa far aala	ot TAL moto						
	nical Analysis gical Analysis								•	
	Other Analysis					or tissue obs	ervations			
	Analysis	2 T Onar grabs	tor toxicity a	na grain, i c		01 113340 000				
WATER QU	ALITY									
Sample ID	SED114				S	ample Time	9:15			
		1			1	1	1	1		
Depth	DO	Temperature	Salinity	ORP	pH	Sp. Cond.	Turbidity	Flow	Observations	
	(()		-	-	pri		() (7)	10.1.5		
<u> </u>	(mg/l)	(° C)	(%)	(mV)		(mS/cm)	(NTU)	(ft/s)		
Surface Bottom	9.63 9.54		-	-	7.84 7.79		(NTU) 8 12	(ft/s) 0.08 0.04	none	
	9.63 9.54	(° C) 21.7	(%) 0.8	(mV) 210	7.84	(mS/cm) 14.5	8	0.08		
Bottom	9.63 9.54	(° C) 21.7 21.7	(%) 0.8	(mV) 210	7.84	(mS/cm) 14.5 15.6	8	0.08		
Bottom	9.63 9.54	(° C) 21.7 21.7	(%) 0.8	(mV) 210	7.84	(mS/cm) 14.5 15.6	8 12	0.08 0.04 N/A		
Bottom SEDIMENT (Core Per	9.63 9.54 CORE Water Depth	(° C) 21.7 21.7 N/A N/A	(%) 0.8	(mV) 210	7.84	(mS/cm) 14.5 15.6	8 12 ample Time	0.08 0.04 N/A		
Bottom SEDIMENT (Core Per Core Len	9.63 9.54 CORE Water Depth netration Depth	(° C) 21.7 21.7 N/A N/A N/A	(%) 0.8 0.9	(mV) 210 190	7.84	(mS/cm) 14.5 15.6	8 12 ample Time Sample ID	0.08 0.04 N/A		
Bottom SEDIMENT (Core Per Core Len Depth (in)	9.63 9.54 CORE Water Depth netration Depth	(° C) 21.7 21.7 N/A N/A	(%) 0.8 0.9	(mV) 210 190	7.84	(mS/cm) 14.5 15.6	8 12 ample Time	0.08 0.04 N/A		
Bottom SEDIMENT (Core Per Core Len	9.63 9.54 CORE Water Depth netration Depth	(° C) 21.7 21.7 N/A N/A N/A	(%) 0.8 0.9	(mV) 210 190	7.84	(mS/cm) 14.5 15.6	8 12 ample Time Sample ID	0.08 0.04 N/A		
Bottom SEDIMENT (Core Per Core Len Depth (in)	9.63 9.54 CORE Water Depth netration Depth	(° C) 21.7 21.7 N/A N/A N/A	(%) 0.8 0.9	(mV) 210 190	7.84	(mS/cm) 14.5 15.6	8 12 ample Time Sample ID	0.08 0.04 N/A		
Bottom SEDIMENT (Core Per Core Len Depth (in)	9.63 9.54 CORE Water Depth netration Depth	(° C) 21.7 21.7 N/A N/A N/A	(%) 0.8 0.9	(mV) 210 190	7.84	(mS/cm) 14.5 15.6	8 12 ample Time Sample ID	0.08 0.04 N/A		
Bottom SEDIMENT (Core Per Core Len Depth (in)	9.63 9.54 CORE Water Depth netration Depth	(° C) 21.7 21.7 N/A N/A N/A	(%) 0.8 0.9	(mV) 210 190	7.84	(mS/cm) 14.5 15.6	8 12 ample Time Sample ID	0.08 0.04 N/A		
Bottom SEDIMENT (Core Per Core Len Depth (in)	9.63 9.54 CORE Water Depth netration Depth	(° C) 21.7 21.7 N/A N/A N/A	(%) 0.8 0.9	(mV) 210 190	7.84	(mS/cm) 14.5 15.6	8 12 ample Time Sample ID	0.08 0.04 N/A		
Bottom SEDIMENT (Core Per Core Len Depth (in)	9.63 9.54 CORE Water Depth netration Depth	(° C) 21.7 21.7 N/A N/A N/A	(%) 0.8 0.9	(mV) 210 190	7.84	(mS/cm) 14.5 15.6	8 12 ample Time Sample ID	0.08 0.04 N/A		
Bottom SEDIMENT (Core Per Core Len Depth (in) N/A	9.63 9.54 CORE Water Depth netration Depth	(° C) 21.7 21.7 N/A N/A Description/O	(%) 0.8 0.9	(mV) 210 190	7.84	(mS/cm) 14.5 15.6	8 12 ample Time Sample ID	0.08 0.04 N/A		
Bottom SEDIMENT (Core Per Core Len Depth (in) N/A	9.63 9.54 CORE Water Depth netration Depth	(° C) 21.7 21.7 N/A N/A Description/O	(%) 0.8 0.9	(mV) 210 190	7.84	(mS/cm) 14.5 15.6	8 12 ample Time Sample ID	0.08 0.04 N/A		
Bottom SEDIMENT (Core Per Core Len Depth (in) N/A	9.63 9.54 CORE Water Depth netration Depth	(° C) 21.7 21.7 N/A N/A Description/O	(%) 0.8 0.9	(mV) 210 190	7.84	(mS/cm) 14.5 15.6	8 12 ample Time Sample ID	0.08 0.04 N/A		
Bottom SEDIMENT (Core Per Core Len Depth (in) N/A	9.63 9.54 CORE Water Depth netration Depth	(° C) 21.7 21.7 N/A N/A Description/O	(%) 0.8 0.9	(mV) 210 190	7.84	(mS/cm) 14.5 15.6	8 12 ample Time Sample ID	0.08 0.04 N/A		
Bottom SEDIMENT (Core Per Core Len Depth (in) N/A	9.63 9.54 CORE Water Depth netration Depth	(° C) 21.7 21.7 N/A N/A Description/O	(%) 0.8 0.9	(mV) 210 190	7.84	(mS/cm) 14.5 15.6	8 12 ample Time Sample ID	0.08 0.04 N/A		
Bottom SEDIMENT (Core Per Core Len Depth (in) N/A	9.63 9.54 CORE Water Depth netration Depth	(° C) 21.7 21.7 N/A N/A Description/O	(%) 0.8 0.9	(mV) 210 190	7.84	(mS/cm) 14.5 15.6	8 12 ample Time Sample ID	0.08 0.04 N/A		
Bottom SEDIMENT (Core Per Core Len Depth (in) N/A	9.63 9.54 CORE Water Depth netration Depth	(° C) 21.7 21.7 N/A N/A Description/O	(%) 0.8 0.9	(mV) 210 190	7.84	(mS/cm) 14.5 15.6	8 12 ample Time Sample ID	0.08 0.04 N/A		
Bottom SEDIMENT (Core Per Core Len Depth (in) N/A	9.63 9.54 CORE Water Depth netration Depth agth Recovered	(° C) 21.7 21.7 N/A N/A N/A Description/O	(%) 0.8 0.9	(mV) 210 190	7.84	(mS/cm) 14.5 15.6	8 12 ample Time Sample ID	0.08 0.04 N/A		
Bottom SEDIMENT (Core Per Core Len Depth (in) N/A	9.63 9.54 CORE Water Depth hetration Depth agth Recovered	(° C) 21.7 21.7 N/A N/A N/A Description/O	(%) 0.8 0.9	(mV) 210 190	7.84 7.79	(mS/cm) 14.5 15.6	8 12 ample Time Sample ID Analysis	0.08 0.04 N/A		

C:\Documents and Settings\TORR\My Documents\Tarrytown\Field Logs\2006_Sediment_Field_Logs.xls

Equipment	SED115 Ponar/Lexane 9/12/2006							iutkowski,	P.Doughee, A.Baird
	SAMPLE Vater Depth (ft) mple Depth (ft)				Sa	mple Time Sample ID			
Biolo	nical Analysis gical Analysis	Estimated reco One dredge sid benthic commu 2 0-6" Lexan co 3 Ponar grabs 2 Ponar grabs	eved (5mm) inity dredges pres for sele for benthic o	for tissue org s. No vegeta ct TAL meta community	ganisms bu ition observ Is/TOC	it none obser ved in dredge	ved. Observ s.	ations also	and o made in
WATER QUA Sample ID					s	ample Time	15:20		
Depth	DO (mg/l)	Temperature (° C)	Salinity (%)	ORP (mV)	рН	Sp. Cond. (mS/cm)	Turbidity (NTU)	Flow (ft/s)	Observations
Surface Bottom	10.1 8.84	23.1 22.7	0.8 0.9	210 190	7.84 7.79	14.5 15.6	8 12	0.08	none none
	CORE Water Depth netration Depth gth Recovered	N/A				Sa	imple Time Sample ID		
Depth (in) N/A		Description/O	bservation				Analysis		
	š								
SAMPLE DE Laboratory Delivered Via	: Columbia Anal	lytical		Field Sa	ampling Co	oordinator:	Dave Rigg		

Station	SED116			Sample Type Sediment Sampling							
quipment	Ponar/Lexane	1			Sampling	Personnel	D.Buys, J.G	utkowski, ł	Doughee, A.Baird		
Date	9/12/2006				Weather			Sunny, low 60's F			
	SAMPLE										
v	Vater Depth (ft	<u>9.8</u>			Sa	ample Time	13:30				
Sa	mple Depth (ft	0.5				Sample ID	SED116				
Biolog	-	No vegetation of 2 0-6" Lexan or 3 Ponar grabs Grain Size	ores for sele	ct TAL meta	ls/TOC						
ATER QU	ALITY										
ample ID	SED116				S	Sample Time	13:00				
		1		ORP	pН	Cm. Comd	Turbidity	Flow	Observations		
Depth	DO	Temperature	Salinity	ORP	рп	Sp. Cond.	Turbiuity	1100	Observations		
Depth	DO (mg/l)	Temperature (° C)	Salinity (%)	(mV)	рп	(mS/cm)	(NTU)	(ft/s)	Observations		
Depth Surface				••••	рп 7.84		-	-	none		

SEDIMENT CORE

Water Depth N/A	
Core Penetration Depth N/A	
Core Length Recovered N/A	

Sample Time <u>N/A</u> Sample ID <u>N/A</u>

Depth (in)	Description/Observation	Analysis
N/A		

COMMENTS

SAMPLE DESTINATION

Laboratory: Columbia Analytical

Delivered Via: Fed Ex Field Sam

Field Sampling Coordinator: Dave Rigg

C:\Documents and Settings\TORR\My Documents\Tarrytown\Field Logs\2006_Sediment_Field_Logs.xls

Equipment	SED117 Ponar/Lexane 9/18/2006			Sample Type Sediment Sampling Sampling Personnel D. Rigg, J. Gukowski, A. Baird, P. Dougher, R. Kapp Weather Sunny, 70 F						
	AMPLE ater Depth (ft) nple Depth (ft)				Sa	ample Time Sample ID				
	Description	sediment was p	predominant	y detritus (le	eaf, sticks)	with relic she	ells and some	silt and s	and	
Biolog	ical Analysis	2 0-6" Lexan co 3 Ponar grabs 2 Ponar grabs	for benthic c	ommunity		for tissue ob	servations			
WATER QUA Sample ID	LITY SED117				S	ample Time	16:30			
Depth	DO (mg/l)	Temperature (° C)	Salinity (%)	ORP (mV)	рН	Sp. Cond. (mS/cm)	Turbidity (NTU)	Flow (ft/s)	Observations	
Surface	11.09	24.5	0.5	280	7.86	9.13	74.3	0.34	none	
Bottom	10.64	24.5	0.6	271	7.7	9.79	11.4	0.31	none	
	ORE Water Depth etration Depth gth Recovered	N/A				Sa	mple Time			
Depth (in)		Description/O	bservation				Analysis			
Depth (in) N/A										
COMMENTS										
SAMPLE DE Laboratory: Delivered Via:	Columbia Anal	ytical		Field Sa	ampling Co	oordinator:	Dave Rigg			

Station	SED118				Sa	mple Type	Sediment Sa	ampling	
Equipment	Ponar/Lexane				Sampling	Personnel	D. Rigg, P. I	Dougher, J	. Gutkowski
Date	9/19/2006					Weather	Overcast, 70	0F	
SEDIMENT S		12.0'			6	mplo Timo	9.20		
	Vater Depth (ft)	-			58	mple Time			
5a	mple Depth (ft)	0.5				Sample ID	SEDTIN		
	Description	sediment was o mussels observ		/ gravels wit	h relic shell	s. <5% silt a	and organic n	natter. Pull	ed 12 grabs with no
Chem	nical Analysis	2 0-6" Lexan co		ct TAL meta	als/TOC				
Biolog	gical Analysis	3 Ponar grabs	for benthic c	ommunity					
		2 Ponar grabs			extra ponar	for tissue obs	servations		
				~ '					
WATER QUA					_				
Sample ID	SED118				5	ample Time	8:30		
Depth	DO (mg/l)	Temperature (° C)	Salinity (%)	ORP (mV)	рН	Sp. Cond. (mS/cm)	Turbidity (NTU)	Flow (ft/s)	Observations
Surface	9.76	23.3	0.5	2.83	7.92	9.8	13.1	-0.67	none
Bottom	9.71	23.3	0.6	2.00	7.87	10.2	15.3	-0.37	none
	Water Depth Water Depth etration Depth gth Recovered	N/A				Sa	ample Time Sample ID		
Depth (in)		Description/O	bservation				Analysis		
N/A		20001.01.01.0					7		
COMMENTS									
	Columbia Anal	lytical							
Delivered Via:	Fed Ex			Field S	ampling C	oordinator:	Dave Rigg		

C:\Documents and Settings\TORR\My Documents\Tarrytown\Field Logs\2006_Sediment_Field_Logs.xls

	SED119 Ponar/Lexane			Sample Type Sediment Sampling Sampling Personnel D. Rigg, P. Dougher, J. Gutkowski						
	9/21/2006						Sean Madde			
2410	0,21,2000						Windy, 65 F		-0)	
							<u></u>			
SEDIMENT S	SAMPLE									
v	Vater Depth (ft)	21.4			San	nple Time	11:30			
Sa	mple Depth (ft)	0.5			5	Sample ID	SED119			
							-			
	Description	70% silt/ clay w					No mussels	in 6 grabs		
		Some relic oyst	er shells an	d intermitter	nt sheen glob	oules.	No tissue sa	mples coll	ected	
		2 0-6" Lexan co			ls/TOC					
		3 Ponar grabs f								
C	Other Analysis	2 Ponar grabs f	or toxicity ar	nd grain, 1 e	extra ponar fo	or tissue ob	servations			
WATER QU					-					
Sample ID	SED119				Sa	mple Time	11:30			
Donth	DO	Temperature	Salinity	ORP	ъЦ	Sn Cond	Turbidity	Flow	Observations	
Depth	(mg/l)	(° C)	(%)	(mV)	рН	(mS/cm)	(NTU)	(ft/s)	Observations	
Surface	9.6	21.5	0.6	101	7.91	11.2	18.7	-0.42	2020	
Bottom	9.64	21.3	0.6	92	7.85	11.2	15.8	-0.42	none	
SEDIMENT (Water Depth					Sa	mple Time Sample ID			
	netration Depth ogth Recovered									
Core Len		8.1	servation							
	gth Recovered	8.1 Description/Ot		e sand, trace	organics (she	lls), wet	Analysis	ls/TOC		
Core Len Depth (in)	gth Recovered	8.1	fine to course			lls), wet		ls/TOC		
Core Len Depth (in) 0 - 3	gth Recovered	8.1 Description/Ot n very soft silt, little	fine to course			lls), wet	Analysis	ls/TOC		
Core Len Depth (in) 0 - 3	gth Recovered	8.1 Description/Ot n very soft silt, little	fine to course			lls), wet	Analysis	ls/TOC		
Core Len Depth (in) 0 - 3	gth Recovered	8.1 Description/Ot n very soft silt, little	fine to course			lls), wet	Analysis	ls/TOC		
Core Len Depth (in) 0 - 3 3 - 98	Dark black/brow Dark gray/black	8.1 Description/Ot n very soft silt, little	fine to course			lls), wet	Analysis	Is/TOC		
Core Len Depth (in) 0 - 3 3 - 98	Dark black/brow Dark gray/black	8.1 Description/Ot	fine to course I, trace silt, tra	ace organics (shells)	lls), wet	Analysis	ls/TOC		
Core Len Depth (in) 0 - 3 3 - 98	Dark black/brow Dark gray/black	8.1 Description/Ob n very soft silt, little fine to course sand	fine to course I, trace silt, tra	ace organics (shells)	lls), wet	Analysis	ls/TOC		
Core Len Depth (in) 0 - 3 3 - 98	Dark black/brow Dark gray/black	8.1 Description/Ob n very soft silt, little fine to course sand	fine to course I, trace silt, tra	ace organics (shells)	lls), wet	Analysis	Is/TOC		
Core Len Depth (in) 0 - 3	Dark black/brow Dark gray/black	8.1 Description/Ob n very soft silt, little fine to course sand	fine to course I, trace silt, tra	ace organics (shells)	lls), wet	Analysis	ls/TOC		
Core Len <u>Depth (in)</u> 0 - 3 3 - 98	Dark black/brow Dark gray/black	8.1 Description/Ob n very soft silt, little fine to course sand	fine to course I, trace silt, tra	ace organics (shells)	lls), wet	Analysis	ls/TOC		
Core Len Depth (in) 0 - 3 3 - 98	Dark black/brow Dark gray/black	8.1 Description/Ob n very soft silt, little fine to course sand	fine to course I, trace silt, tra	ace organics (shells)	lls), wet	Analysis	ls/TOC		
Core Len Depth (in) 0 - 3 3 - 98 COMMENTS	Dark black/brow Dark gray/black	8.1 Description/Ob n very soft silt, little fine to course sand	fine to course I, trace silt, tra	ace organics (shells)	lls), wet	Analysis	ls/TOC		
Core Len Depth (in) 0 - 3 3 - 98 COMMENTS SAMPLE DE	Dark black/brow Dark gray/black	8.1 Description/Ot n very soft silt, little fine to course sand	fine to course I, trace silt, tra	ace organics (shells)	lls), wet	Analysis	ls/TOC		
Core Len Depth (in) 0 - 3 3 - 98 COMMENTS SAMPLE DE	Dark black/brow Dark gray/black	8.1 Description/Ot n very soft silt, little fine to course sand	fine to course I, trace silt, tra	ace organics (shells)		Analysis Select meta	ls/TOC		

Station	SED120						Sediment Sa		
Equipment	40/4/0000			Sampling Personnel A. Baird, J. Gutkowsk Weather Sunny, 65° F					P. Daugher
Date	10/4/2006				F				
SEDIMENT S V Sa	SAMPLE Vater Depth (ft) mple Depth (ft) Description				:	nple Time Sample ID			
Biolog	nical Analysis gical Analysis other Analysis								
WATER QU/ Sample ID	ALITY SED120				Sa	ample Time	12:30		
Depth	DO (mg/l)	Temperature (° C)	Salinity (%)	ORP (mV)	рН	Sp. Cond. (mS/cm)	Turbidity (NTU)	Flow (ft/s)	Observations
Surface	9.46	20.9	0.5	2.55	6.83	9.70	18.4	-1.00	
Bottom	9.57	20.8	0.6	2.57	6.19	10.7	34.5	-0.4	
ore Penetra	Vater Depth (ft) ation Depth (ft) Recovered (ft) Description/O		ourse sand,	sheen, septi	c odor.		mple Time Sample ID Analysis		
COMMENTS									

Station	SED121				Sa	ample Type	Sediment S	ampling	
	Ponar/Lexane				Sampling	Personnel			. Gutkowski
Date	9/19/2006					Weather	Overcast, 70	0F	
	Vater Depth (ft) mple Depth (ft)					ample Time Sample ID er. Slight she	SED121	was observ	red in 10
		2 0-6" Lexan co			ls/TOC				
		3 Ponar grabs f							
c	Other Analysis	2 Ponar grabs f	or toxicity a	nd grain, 1 e	extra ponar	for tissue ob	servations		
WATER QU Sample ID					5	Sample Time	9:10		
Depth	DO	Temperature	Salinity	ORP	pН	Sp. Cond.	Turbidity	Flow	Observations
•	(mg/l)	(° C)	(%)	(mV)	•	(mS/cm)	(NTU)	(ft/s)	
Surface	9.87	23.3	0.6	278	7.97	10.3	14.5	-0.44	none
Bottom	9.77	23.3	0.6	271	7.92	10.5	13.2	-0.45	none
	Water Depth netration Depth ogth Recovered	N/A					mple Time Sample ID		
Depth (in)		Description/Ol	oservation				Analysis		
N/A									
COMMENTS	3								
Laboratory	ESTINATION : Columbia Anal : Fed Ex			Field Sa	ampling C	oordinator:	Dave Rigg		

Equipment	SED122 Ponar 10/10/2006			-	Sa Sampling		Sediment S A. Baird, P. Sunny, caln	Dougher,	J. Gutkowski, R. Kipp
SEDIMENT \ Sa	Water Depth (ft) ample Depth (ft)					ample Time Sample ID			
Biolo	nical Analysis gical Analysis Other Analysis								
WATER QU Sample ID					S	Sample Time	14:45		
Depth	DO (mg/l)	Temperature (° C)	Salinity (%)	ORP (mV)	рН	Sp. Cond. (mS/cm)	Turbidity (NTU)	Flow (ft/s)	Observations
Surface Bottom	9.39 9.41	20.0 19.4	0.5 0.6	255.00 252.00	8.16 8.14	9.40	10.6 19.9	-	
Core Penetr	CORE Water Depth (ft) ration Depth (ft) n Recovered (ft)						mple Time Sample ID		
Depth (in) 0 - 6	Description/O Silt with live oy	bservation sters, silt, orgar	iics (shells),	, sand, no od	lor, no she		Analysis		
COMMENTS	8								
	ESTINATION /: Columbia Anal :: Fed Ex	ytical		Field Sa	ampling C	oordinator:	Dave Rigg		

Equipment	SED123 Ponar/Lexane 9/19/2006				ampling Dougher, J. DF	Gutkowski			
	SAMPLE Vater Depth (ft) mple Depth (ft)					mple Time Sample ID			
	Description	Sediment was	ight silt with	1 ~5% fine o	rganic matte	er. No sheer	n. No clams	observed.	
Biolog	nical Analysis gical Analysis other Analysis	3 Ponar grabs	for benthic o	community		for tissue ob	servations		
WATER QUA Sample ID	ALITY SED123				S	ample Time	14:05		
Depth	DO (mg/l)	Temperature (° C)	Salinity (%)	ORP (mV)	рН	Sp. Cond. (mS/cm)	Turbidity (NTU)	Flow (ft/s)	Observations
Surface	9.93	23.5	0.6	283	7.99	10.4	14.5	1.05	none
Bottom	7.64	22.5	1	279	7.82	16.8	15.6	0.3	none
	CORE Water Depth netration Depth gth Recovered	10				Sa	ample Time Sample ID		
Depth (ft)		Description/O	bservation				Analysis		
Depth (ft)) - 72	Soft dark brow	n clayey silt, tra		l, trace orga	nics (shells)		Select meta	ls/TOC	
72 - 120	Dark gray/brow	n fine to course	e sand, little	silt, trace cla	ay, trace orç	ganics (shells	5)		
COMMENTS	Geochronology	/ core was also	collected:						
) - 8	Dark gray/brow	n very soft silt,							
3 - 75	Dark gray/brow								
75 - 104		vn clayey silt, lig	ht fine sand	, trace orga	nics (shells)				
Cesium-137,	Lead-210 analy	ses requested							

SAMPLE DESTINATION Laboratory: <u>Columbia Analytical, Mass Spec</u> Delivered Via: Fed Ex

Field Sampling Coordinator: Dave Rigg

Al Analysis Al Analysis Analysis TY D124 DO (mg/l) 10.01 9.69 RE Vater Depth ation Depth	10.5 0.5 sediment was l grabs. Retaine 2 0-6" Lexan cc 3 Ponar grabs t 2 Ponar grabs t 2 Ponar grabs t 2 Ponar grabs t 2 2 3.2 23.2 N/A	light silt with ed for analys ores for sele for benthic c for toxicity a	sis. ect TAL meta community	Sampling Sa organic ma als/TOC extra ponar	ample Time Sample ID atter, slight she	D. Rigg, P. I Overcast, 7(10:30 SED124 een, no odor servations 10:30	Dougher, J DF	
MPLE er Depth (ft) le Depth (ft) Description al Analysis al Analysis al Analysis r Analysis r Analysis TY D124 D0 (mg/l) 10.01 9.69 RE Vater Depth ation Depth	0.5 sediment was I grabs. Retaine 2 0-6" Lexan cc 3 Ponar grabs 1 2 Ponar grabs 1 2 Ponar grabs 1 (° C) 23.2 23.2 N/A	light silt with ed for analys ores for sele for benthic c for toxicity a Salinity (%) 0.6	ect TAL meta community and grain, 1 e (mV) 287	Sa organic ma als/TOC extra ponar s pH 7.98	Weather ample Time Sample ID atter, slight she for tissue obs Sample Time Sp. Cond. (mS/cm) 10.5	Overcast, 7(10:30 SED124 een, no odor servations 10:30 Turbidity (NTU) 12.9	DF 	oserved in 10 Observations none
er Depth (ft) le Depth (ft) Description al Analysis al Analysis r Analysis r Analysis r D124 D0 (mg/l) 10.01 9.69 RE Vater Depth ation Depth	0.5 sediment was I grabs. Retaine 2 0-6" Lexan cc 3 Ponar grabs 1 2 Ponar grabs 1 2 Ponar grabs 1 (° C) 23.2 23.2 N/A	light silt with ed for analys ores for sele for benthic c for toxicity a Salinity (%) 0.6	ect TAL meta community and grain, 1 e (mV) 287	organic ma als/TOC extra ponar s pH 7.98	Sample ID atter, slight she for tissue obs Sample Time Sp. Cond. (mS/cm) 10.5	SED124 een, no odor servations 10:30 Turbidity (NTU) 12.9	Flow (ft/s) -0.02	Observations none
r Analysis TY D124 DO (mg/l) 10.01 9.69 RE Vater Depth ation Depth	2 Ponar grabs f Temperature (° C) 23.2 23.2 N/A	for toxicity a Salinity (%) 0.6	or grain, 1 e ORP (mV) 287	рН 7.98	Sample Time Sp. Cond. (mS/cm) 10.5	10:30 Turbidity (NTU) 12.9	(ft/s) -0.02	none
TY D124 (mg/l) 10.01 9.69 RE Vater Depth ation Depth	Temperature (° C) 23.2 23.2 N/A	Salinity (%) 0.6	ORP (mV) 287	рН 7.98	Sample Time Sp. Cond. (mS/cm) 10.5	10:30 Turbidity (NTU) 12.9	(ft/s) -0.02	none
D124 DO (mg/l) 10.01 9.69 RE Vater Depth ation Depth	(° C) 23.2 23.2 N/A	(%) 0.6	(mV) 287	рН 7.98	Sp. Cond. (mS/cm) 10.5	Turbidity (NTU) 12.9	(ft/s) -0.02	none
(mg/l) 10.01 9.69 RE Vater Depth ation Depth	(° C) 23.2 23.2 N/A	(%) 0.6	(mV) 287	7.98	(mS/cm) 10.5	(NTU) 12.9	(ft/s) -0.02	none
10.01 9.69 RE Vater Depth ation Depth	23.2 23.2 N/A	0.6	287		10.5	12.9	-0.02	
9.69 RE Vater Depth ation Depth	23.2 N/A		-			-		
RE Vater Depth ation Depth	N/A	0.6	282	7.97	10.7	13.4	-0.09	none
Vater Depth ation Depth								
Recovered		bservation				mple Time Sample ID Analysis		
	2		Field Sa	ampling C	oordinator:	Dave Rigg		
)	lumbia Anal	lumbia Analytical	lumbia Analytical	lumbia Analytical	lumbia Analytical	lumbia Analytical	lumbia Analytical	lumbia Analytical

	SED125				Sar	nple Type	Sediment Sa	ampling	
Equipment	40/4/0000				Sampling I	Personnel	A. Baird, J. C	Gutkowski, -	P. Daugher
Date	10/4/2006					weather	Sunny, 65° F	-	
SEDIMENT S V Sa	/ater Depth (ft) mple Depth (ft)				\$	nple Time Sample ID			
Biolog	nical Analysis gical Analysis ther Analysis								
WATER QU/ Sample ID					Sa	ample Time	15:00		
Depth	DO	Temperature	-	ORP	рН		Turbidity	Flow	Observations
0	(mg/l)	(° C)	(%)	(mV)	7.4.4	(mS/cm)	(NTU)	(ft/s)	
Surface Bottom	9.87 9.16		0.5 0.6	2.53 2.55	7.14 6.95	9.00 10.70		-0.42 -0.39	
Core Penetra	Vater Depth (ft) ation Depth (ft) Recovered (ft) Description/O						mple Time _ Sample ID _ Analysis		
SAMPLE DE	STINATION	ytical				ordinator:	Dave Rigg		

Station	SED126				Sa	ample Type	Sediment S	ampling	
Equipment	Vibracore			Sampling Personnel A. Baird, J. Gutkowsk					P. Daugher
Date	10/4/2006					Weather	Sunny, 65°	F	
Sa	Vater Depth (ft) mple Depth (ft)	Weighed 13g, 3	33cm long			ample Time Sample ID		,	
	gical Analysis ther Analysis	clam							
VATER QUA Sample ID					5	Sample Time	13:30		
Depth	DO (mg/l)	Temperature (° C)	Salinity (%)	ORP (mV)	рН	Sp. Cond. (mS/cm)	Turbidity (NTU)	Flow (ft/s)	Observations
Surface	9.22	21.6	0.6	1.51	6.96	11.1	18.7	0.05	
Bottom	9.78	21.8	0.6	1.6	6.8	10.7	26	0	
ore Penetra	Vater Depth (ft) ation Depth (ft) Recovered (ft) Description/O Silt, fine sand,		odor, no she	een.			mple Time Sample ID Analysis		
OMMENTS	·								
	STINATION Columbia Anal Fed Ex	ytical		Field Sa	ampling C	oordinator:	Dave Rigg		

Station	SED127				Sa	mple Type	Sediment Sa	ampling	
Equipment	Ponar/Lexane				Sampling	Personnel	D. Rigg, P. I	Dougher, J	. Gutkowski
Date	9/19/2006					Weather	Overcast, 70)F	
SEDIMENT S W	ater Depth (ft)	11.8			Sa	Imple Time			
Sar	nple Depth (ft)	0.5				Sample ID	SED127		
	••••					•			
		sediment was li no clams obser		~ 5% fine o	rganic matt	er, small she	en- emitting (globules in	each
		2 0-6" Lexan co			als/TOC				
Biolog	ical Analysis	3 Ponar grabs f	or benthic c	ommunity					
0	ther Analysis	2 Ponar grabs f	or toxicity a	nd grain, 1 e	extra ponar	for tissue ob	servations		
WATER QUA Sample ID					S	ample Time	13:00		
Depth	DO	Temperature	Salinity	ORP	рН	Sp. Cond.	Turbidity	Flow	Observations
	(mg/l)	(° C)	(%)	(mV)	-	(mS/cm)	(NTU)	(ft/s)	
Surface	10.06	23.6	0.8	286	8	10.6	17.8	0.42	none
Bottom	8.42	22.9	0.9	279	7.92	14.7	18.9	0.37	none
	ORE Water Depth etration Depth gth Recovered	10.0				Sa	mple Time Sample ID		
epth (ft)		Description/Ol	ecryation				Analysis		
- 82		ft silt, little organics (r		chollo)			Select metal		
2 - 114	* /	, some fine to mediu			agatation shal	lc)	Select meta	13/100	
		,		<u></u>					
COMMENTS									
SAMPLE DE Laboratory: Delivered Via:	Columbia Anal	ytical		Field Sa	ampling Co	pordinator:	Dave Rigg		

Equipment	SED128 Ponar/Lexane 9/19/2006					mple Type Personnel Weather		Dougher, J	J. Gutkowski
	ater Depth (ft) nple Depth (ft)		ight cilt with	- 5% fine o		mple Time Sample ID	SED128		a each
Biolog O	ical Analysis ical Analysis ther Analysis	2 0-6" Lexan cc 3 Ponar grabs 2 Ponar grabs	ved. bres for sele for benthic c	ct TAL meta	als/TOC				
WATER QUA Sample ID	LITY SED128				S	ample Time	11:45		
Depth	DO (mg/l)	Temperature (° C)	Salinity (%)	ORP (mV)	рН	Sp. Cond. (mS/cm)	Turbidity (NTU)	Flow (ft/s)	Observations
Surface Bottom	10.95 10.67	23.9 23.7	0.6 0.6	274 263	8.09 8.08	10.5 10.8	12.4 13.5	0.52 0.48	none
	ORE Water Depth etration Depth gth Recovered	9.0					mple Time Sample ID		
Depth (ft)		Description/O	bservation				Analysis		
0 - 24 24 - 72		vn soft silt,, trace vn silt, trace fine	e fine sand,				Select meta	ls/TOC	
0 - 24 24 - 72	Dark brown ve Dark gray/brov	y core was also ry soft silt, little o vn clayey silt, tra	organics (ve						
SAMPLE DE		vses requested	ec						

Laboratory: <u>Columbi</u> Delivered Via: <u>Fed Ex</u>

Field Sampling Coordinator: Dave Rigg

Equipment	SED129 Tech Vibracore 10/10/2006	9		Sample TypeSediment SamplingSampling PersonnelA. Baird, P. Dougher,WeatherSunny, calm, 75°					J. Gutkowski, R. Kipp
SEDIMENT S W Sar	/ater Depth (ft) nple Depth (ft)	11 weighed 19 g, 3			Sa	mple Time Sample ID	10:30 SED129 (0-	6) BT	- -
Biolog	iical Analysis jical Analysis ther Analysis	clam							- - -
WATER QUA Sample ID					S	ample Time	10:30		-
Depth	DO	Temperature	Salinity	ORP	рН	Sp. Cond.	Turbidity	Flow	Observations
	(mg/l)	(° C)	(%)	(mV)		(mS/cm)	(NTU)	(ft/s)	
Surface Bottom	9.77 9.64	19.4 19.2	0.6	269.00 262.00	8.20 8.32	8.64 9.41	30.1 28.9	-	
Core Penetra Core Length	/ater Depth (ft) ition Depth (ft) Recovered (ft)					Sa	ample Time Sample ID		
Depth (in) 0 - 6	Description/O	bservation fine organics, co	oroo oond				Analysis		
COMMENTS									
SAMPLE DE Laboratory: Delivered Via:	Columbia Anal	lytical		Field Sa	ampling Co	oordinator:	Dave Rigg		

Equipment	SED130 Tech Vibracor 10/10/2006	e				ampling Dougher, √ n, 75⁰⊧	J. Gutkowski, R. Kipp		
SEDIMENT S V Sa	Vater Depth (ft) mple Depth (ft)	9 	.4 cm long			ample Time Sample ID	SED130 (0-		
Biolog	nical Analysis gical Analysis)ther Analysis								
WATER QUA Sample ID					s	Sample Time	10:45		
Depth	DO (mg/l)		Salinity	ORP	рН			Flow	Observations
Surface	(mg/l) 9.66	(° C) 19.3	<u>(%)</u> 0.6	(mV) 245.00	8.11	(mS/cm) 9.04	(NTU) 22.3	(ft/s) -	
Bottom	9.84	19.1	0.5	233.00	8.14	9.70	25.7	-	
Core Penetra	Vater Depth (ft) ation Depth (ft) Recovered (ft)					Sa	ample Time Sample ID Analysis		
0-6		fine organics, co	urse sand, s	slight sheen,	slight odo	r.			
COMMENTS	3								
	E STINATION : Columbia Ana : Fed Ex	lytical		Field Sa	mpling C	oordinator:	Dave Rigg		

Station	SED131					ample Type			
				Sampling Personnel A. Baird, P. Dougher,					J. Gutkowski, R. Kipp
Date	10/10/2006					Weather	Sunny, calm	n, 75⁰ _⊧	
SEDIMENT S V Sa	Vater Depth (ft) mple Depth (ft)								
Char									
Biolo	nical Analysis gical Analysis hther Analysis								
WATER QU/ Sample ID					S	Sample Time	12:45		
Depth	DO (mg/l)	Temperature (° C)	Salinity (%)	ORP (mV)	рН	Sp. Cond. (mS/cm)	Turbidity (NTU)	Flow (ft/s)	Observations
Surface	9.78	19.6	0.6	178.00	8.09	9.05	22.1	-	
Bottom	9.83	19.6	0.5	173.00	8.08	8.90	20.8	-	
Core Penetra Core Length	ation Depth (ft) Recovered (ft)						ample Time Sample ID	SED131	
Depth (in) 0 - 6	Description/O		1				Analysis		
		fine organics, sli							
COMMENTS	i								
	STINATION Columbia Anal Fed Ex			Field Sa	ampling C	oordinator:	Dave Rigg		

Station	SED132				Sa	ample Type	Sediment S	ampling		
Equipment				_	Sampling		A. Baird, P. Dougher, J. Gutkowski, R. Kipp			
Date	10/10/2006					n, 75 ⁰ F				
SEDIMENT S V Sa	Vater Depth (ft) mple Depth (ft)					ample Time Sample ID				
Biolog	nical Analysis gical Analysis other Analysis									
WATER QUA Sample ID					5	Sample Time	13:00			
Depth	DO (mg/l)	Temperature (° C)	Salinity (%)	ORP (mV)	рН	Sp. Cond. (mS/cm)	Turbidity (NTU)	Flow (ft/s)	Observations	
Surface	9.28	9.6	0.6	203.00	8.11	9.23	35.4	-		
Bottom	9.56	19.5	0.5	198.00	8.11	9.27	36.9	-		
Core Penetra Core Length	Vater Depth (ft) ation Depth (ft) Recovered (ft)					Sa	mple Time Sample ID			
Depth (in)	Description/O						Analysis			
0 - 6		ine organics, co								
COMMENTS										
SAMPLE DE Laboratory Delivered Via	Columbia Anal	ytical		Field Sa	ampling C	oordinator:	Dave Rigg			

Station	Sample Type Sediment Sampling								
	Vibracore				Sampling	Personnel	A. Baird, J. Gutkowski, P. Dougher		
Date	10/5/2006				Weather Overcast, 60°, moderate wind				
SEDIMENT S V Sa	/ater Depth (ft) nple Depth (ft)	6.8 	5.5cm long				15:30 SED133 (0-		
Chen	nical Analysis	tissue							
	ical Analysis	clam							
0	ther Analysis								
WATER QU									
Sample ID					S	ample Time	15:30		
Depth	DO (mg/l)	(° C)	Salinity (%)	ORP (mV)	рН	Sp. Cond. (mS/cm)	Turbidity (NTU)	Flow (ft/s)	Observations
Surface	(mg/l) 11.00	20.7	0.5	3.14	7.85	9.14	(110)	(105)	
Bottom	10.93	20.7	0.5	3.14	7.50	9.14	19.8	-	
Core Penetra	ater Depth (ft)	6.8				Sa	ample Time Sample ID		
Depth (in)	Description/O	bservation					Analysis		
0 - 6		lay, trace organi	cs (shells), s	some odor, s	sheen.		Analysis		
			× /						
001115									
COMMENTS									
SAMPLE DE Laboratory Delivered Via:	Columbia Anal	lytical		Field S	ampling Co	oordinator:	Dave Rigg		

	SED134 Tech Vibracore			Sa Sampling	i, P. Dougher				
Date	10/5/2006					Weather	Overcast, 6	0º, modera	ite wind
SEDIMENT S W Sar	/ater Depth (ft) nple Depth (ft)	Weighed 14g, 3			Sá	ample Time Sample ID	<u>16:00</u> SED134 (0-	6) BT	
Biolog	iical Analysis jical Analysis ther Analysis								
WATER QUA Sample ID					s	Sample Time	16:00		
Depth	DO	Temperature	Salinity	ORP	рН	Sp. Cond.	Turbidity	Flow	Observations
	(mg/l)	(° C)	(%)	(mV)		(mS/cm)	(NTU)	(ft/s)	
Surface Bottom	10.96 10.89	20.7 20.7	0.5 0.5	2.90 2.87	8.09 8.01	9.12 9.16	17.3 16.1	-	
Core Penetra	ater Depth (ft)	5				Sa	ample Time Sample ID	<u>16:00</u> SED134	
Depth (in)	Description/O	bservation					Analysis		
0 - 6	Soft silt over cl	lay, trace organi	cs (shells),						
COMMENTS									
	STINATION Columbia Anal Fed Ex			Field S	ampling C	oordinator:	Dave Rigg		

Station	SED135				Sa	mple Type	Sediment Sa	ampling	
Equipment				Sampling Personnel A. Baird, J. Gutkowski, P. Doughe					, P. Dougher
Date	10/5/2006					Weather	Overcast, 60	0º, modera	te wind
SEDIMENT S V Sai	/ater Depth (ft) nple Depth (ft)					Imple Time Sample ID			
Biolog	nical Analysis jical Analysis ther Analysis								
VATER QUA Sample ID					5	ample Time	17:00		
Depth	DO (mg/l)	Temperature (° C)	Salinity (%)	ORP (mV)	рН	Sp. Cond. (mS/cm)	Turbidity (NTU)	Flow (ft/s)	Observations
Surface	10.98	20.7	0.5	213.00	8.21	9.05	18.3	-	
Bottom	10.95	20.7	0.5	200.00	8.13	9.05	18.3	-	
ore Penetra	Ation Depth (ft) Recovered (ft)						mple Time Sample ID Analysis		
- 6		and, some organ	nics (shells).	no sheen.			Analysis		
OMMENTS									
	Columbia Anal	lytical		Field S	ampling C	oordinator:	Dave Rigg		

StationSED136Sample TypeSediment SamplingEquipmentVibracoreSampling PersonnelA. Baird, P. Dougher,Date10/10/2006WeatherSunny, calm, 75° _F							J. Gutkowski, R. Kipp		
SEDIMENT S V Sa	Vater Depth (ft)				Sa	imple Time Sample ID			
Cher	Description								
Biolog	gical Analysis								
WATER QU/ Sample ID					5	ample Time	16:00		
Depth	DO (mg/l)	Temperature (° C)	Salinity (%)	ORP (mV)	рН	Sp. Cond. (mS/cm)	Turbidity (NTU)	Flow (ft/s)	Observations
Surface	9.91	19.7	0.6	209.00	8.13	9.90	32.0	-	
Bottom	10.29	19.6	0.6	204.00	8.16	11.50	39.8	-	
Core Penetra Core Length	Vater Depth (ft) ation Depth (ft) Recovered (ft)						ample Time Sample ID	SED136	
Depth (in) 0 - 6	Description/O	bservation and, silt, fine or	nonion anor	an nond alia	the shaan		Analysis		
0-0	Sill over clay/s	and, siit, line or	Janics, coar	se sand, silg	int sheen,				
COMMENTS	š								
SAMPLE DE Laboratory Delivered Via	: Columbia Anal	lytical		Field Sa	ampling C	oordinator:	Dave Rigg		

Equipment	SED137 Ponar 10/10/2006				Sampling	Personnel	A. Baird, P.	Gediment Sampling A. Baird, P. Dougher, J. Gutkowski, R. Kipp Bunny, calm, 75° _F		
SEDIMENT V Sa	Water Depth (ft)	13		I		ample Time Sample ID	SED 137 (0			
Biolo	nical Analysis gical Analysis Dther Analysis	clam								
WATER QU Sample ID					5	Sample Time	13:15			
Depth	DO (mm/l)		-	ORP	рН	-	Turbidity		Observations	
Surface	(mg/l) 9.07	(° C) 19.4	<u>(%)</u> 0.6	(mV) 224.00	8.12	(mS/cm) 10.60	(NTU) 28.1	(ft/s)		
Bottom	9.36	19.3	0.6	214.00	8.17	10.70	38.3	-		
Core Penetr Core Length Depth (in)	Water Depth (ft) ration Depth (ft) Recovered (ft) Description/C	0 0 0 0 bservation					mple Time Sample ID Analysis	<u>13:15</u> SED137		
0 - 6	Silt over clay/s	and, silt/clay, cc	burse sand,	fine organics	s, slight she	een.				
COMMENTS	S									
Laboratory	ESTINATION :: <u>Columbia Ana</u> :: <u>Fed Ex</u>	lytical		Field Sa	Impling C	oordinator:	Dave Rigg			

Station	SED138				Sa	mple Type	Sediment S	ampling	
Equipment	Ponar/Lexane				Sampling	Personnel	D. Rigg, P. I	Dougher, J	I. Gutkowski
Date	9/21/2006					Oversight	Sean Madde	en (NYSDI	EC)
						Weather	Windy, 65 F		
SEDIMENT	SAMPLE								
v	Vater Depth (ft)	21.8			Sa	mple Time	10:30		
Sa	mple Depth (ft)	0.5				Sample ID	SED138		
	Description	70% silt, 5% sa	ind, 15% rel	ic oyster she	ells. No mu	ssels observ	ed in 6 dred	ge attempt	s. Also, no empty
		mussel shells.	No tissue sa	mples colle	cted. Obser	ved thread-li	ke material a	and approx	imately 10% cinders.
Chen	nical Analysis	2 0-6" Lexan co	ores for sele	ct TAL meta	ls/TOC				
Biolog	gical Analysis	3 Ponar grabs	for benthic o	community					
0	ther Analysis	2 Ponar grabs	for toxicity a	nd grain, 1 e	extra ponar	for tissue ob:	servations		
WATER QU	ALITY								
Sample ID	SED138				S	ample Time	10:30		
Depth	DO	Temperature	Salinity	ORP	рН	Sp. Cond.	Turbidity	Flow	Observations
	(mg/l)	(° C)	(%)	(mV)		(mS/cm)	(NTU)	(ft/s)	
Surface	9.13	27.1	0.7	232	7.88	12.7	13.7	-0.1	none
Bottom	8.73	22.2	0.8	229	7.82	13.5	12.3	-0.83	none
SEDIMENT	CORE								
								10.20	
	Water Depth	20.1				Sa	mple Time	10.30	
	Water Depth etration Depth						mple Time Sample ID		
Core Per	-	10.0					-		
Core Per	etration Depth	10.0					-		
Core Per Core Len	etration Depth gth Recovered	10.0	bservation				-		
Core Per Core Len Depth (in)	etration Depth gth Recovered	10.0 9.5		ganics (roots,	vegetation).		Sample ID	SED138	
Core Per Core Len Depth (in) 0 - 53	etration Depth gth Recovered Dark gray/brown	10.0 9.5 Description/O	sand, trace or				Sample ID Analysis	SED138	
Core Per	etration Depth gth Recovered Dark gray/brown	10.0 9.5 Description/O soft silt, light fine	sand, trace or				Sample ID Analysis	SED138	
Core Per Core Len Depth (in) 0 - 53	etration Depth gth Recovered Dark gray/brown	10.0 9.5 Description/O soft silt, light fine	sand, trace or				Sample ID Analysis	SED138	

COMMENTS Geochronology core was also collected:

0 - 31 Dark black soft silt, light fine to medium sand, trace organics (shells).	
31 - 108 Dark gray/brown silt, light clay, trace organics (roots, vegetation, shells).	
Cesium-137, Lead-211 analyses were requested	

SAMPLE DESTINATION

Laboratory: Columbia Analytical, Mass Spec Delivered Via: Fed Ex

Field Sampling Coordinator: Dave Rigg

Equipment	SED139 Ponar/Lexane 9/20/2006					Personnel	Sediment S D. Rigg, P. Sunny, 65F	Dougher, J	. Gutkowski
	Water Depth (ft)		Somo silt a	ad yony little		ample Time Sample ID			
Biolo	nical Analysis gical Analysis	2 0-6" Lexan co 3 Ponar grabs 2 Ponar grabs	served in 10 pres for sele for benthic c	esediment g ct TAL meta community	rabs Is/TOC		oservations		
WATER QU Sample ID					S	Sample Time	2:15		
Depth	DO (mg/l)	Temperature (° C)	Salinity (%)	ORP (mV)	рН	Sp. Cond. (mS/cm)	Turbidity (NTU)	Flow (ft/s)	Observations
Surface	10.43	22.9	0.6	236	8	11	22.2	0.97	none
Bottom	10.19	22.9	0.6	239	7.97	11.3	23	0.86	none
Core Len Depth (in)	Water Depth water Depth netration Depth ngth Recovered	N/A	bservation			Sa	ample Time Sample ID Analysis		
N/A									
COMMENTS	8								
	ESTINATION :: Columbia Ana :: Fed Ex	lytical		Field Sa	Impling C	oordinator:	Dave Rigg		

	SED140						Sediment C		
Equipment	Vibracore			Sampling Personnel A. Baird, J. Gutkowski					
Date	10/5/2006					Weather			
SEDIMENT S					-				
N N	ater Depth (ft)				Sa	mple Time			
Sa	mple Depth (ft)					Sample ID			
	Decorintion								
	Description								
Chem	nical Analysis								
	gical Analysis								
	ther Analysis								
· ·									
WATER QUA	ALITY								
Sample ID					S	ample Time			
Depth	DO	Temperature	Salinity	ORP	рН	Sp. Cond.	Turbidity	Flow	Observations
	(mg/l)	(° C)	(%)	(mV)		(mS/cm)	(NTU)	(ft/s)	
Surface									
Bottom									
									-
SEDIMENT (CORE								
	later Depth (ft)					Sa	mple Time		
Core Penetra	ation Depth (ft)	2.5					Sample ID	SED140	
Core Length	Recovered (ft)	1.5							
Depth (in)	Description/O						Analysis	7	24.0
0 - 13 13 - 18		ack silt, some fir					Casium - 13	7, Lead - 2	210
13 - 18	Red fine to me	dium sand, som	ie fine to co	urse gravei,	trace organ	ics (snells).			
COMMENTS									
••••••									
SAMPLE DE	STINATION								
	STINATION Mass Spec								
	Mass Spec			Field S	ampling Co	ordinator:	Dave Rigg		

Station	SED141				Sa	ample Type	Sediment C	oring	
	quipment Vibracore				Sampling	Personnel	A. Baird, J.	Gutkowski	
Date	10/5/2006					Weather			
SEDIMENT									
					e.	omolo Timo			
Water Depth (ft) Sample Depth (ft)			Sample Time Sample ID						
Ga	inple Depth (it)					Cample ID			
	Description								
	nical Analysis								
Biological Analysis									
C	ther Analysis								
WATER QUA Sample ID						Sample Time			
Sample ID							·		
Depth	DO	Temperature	Salinity	ORP	рH	Sp. Cond	Turbidity	Flow	Observations
Doptil	(mg/l)	(° C)	(%)	(mV)	P.1	(mS/cm)	(NTU)	(ft/s)	e beer valiente
Surface	(9,.)	(-/	(, -)	()		((()	
Bottom									
Core Penetra	CORE Vater Depth (ft) ation Depth (ft) Recovered (ft)	10.0				Sa	ample Time Sample ID	9:00 SED141	
Depth (in)	Description/0	bservation					Analysis		
0 - 41									
41 - 84		k silt, little fine to n			ace organics	(roots, shells)			
COMMENTS									
COMINENTS									
SAMPLE DE	STINATION								
	Columbia Anal	ytical							
Delivered Via	Fed Ex			Field S	ampling C	oordinator:	Dave Rigg		

Station	SED142				Sar	nple Type	Sediment C	oring	
	Tech Vibracore	Э			Sampling F	Personnel	A. Baird, J.	Gutkowski	
Date	10/5/2006					Weather			
SEDIMENT					Sam	nnia Tima			
v	Vater Depth (ft) mple Depth (ft)				San	nple Time		<u> </u>	
38	mple Depth (it)					sample ID			
	Description								
	Description								
Chen	nical Analysis								
	gical Analysis								
Ö	ther Analysis								
WATER QU	ALITY								
Sample ID					Sa				
		_							
Depth	DO	Temperature		ORP	рН	•	Turbidity		Observations
	(mg/l)	(° C)	(%)	(mV)		(mS/cm)	(NTU)	(ft/s)	
Surface									
Bottom									
Core Penetra	CORE Vater Depth (ft) ation Depth (ft) Recovered (ft)	10.0				Sa	ample Time Sample ID		
Core Length	Recovered (it)	C.0							
Depth (in)	Description/O	bservation					Analysis		
0 - 41	Dark gray/brown so								
41 - 78		e to course sand, so		to medium grav	vel, trace organic	s (shells)			
	• •			· · ·		. ,			
-									
COMMENTS									
-									
SAMPLE DE									
-		vticol							
Delivered Via:	Columbia Anal			Field 6	ampling Co	ordinator	Dava Bica		
				rielu S	amping CO	or unrator:	Dave Rigg		

	SED143				Sample Type Sediment Coring						
Equipment	Vibracore	Sampling Personnel A. Baird, J. Gutkowski									
Date	10/5/2006					Weather					
SEDIMENT S	SAMPLE										
	ater Depth (ft)				Sa	mple Time					
Sar	nple Depth (ft)					Sample ID					
	Description										
Chem	ical Analysis										
Biological Analysis											
0	ther Analysis										
	-										
WATER QUA	LITY										
Sample ID					S	ample Time					
Depth	DO	Temperature	Salinity	ORP	pН	Sp. Cond.	Turbidity	Flow	Observations		
	(mg/l)	(° C)	(%)	(mV)		(mS/cm)	(NTU)	(ft/s)			
Surface		, , ,	、 /			,	· · · ·	× /			
Bottom											
SEDIMENT O	OPE										
	ater Depth (ft)	4.8				64	mple Time	10.45			
	ation Depth (ft)										
	Recovered (ft)						Sample ID	3ED 143			
Core Length	Recovered (II)	5.5									
Depth (in)		hearvation					Analysis				
	Description/Observation Analysis Dark brown/black fine to course sand, some silt, trace organics (roots, shells), trace fine gravel, sheen, slight odor Select Metals/TOC										
			-:		·	ahaan allahtada					
0 - 19	Dark brown/black fine	e to course sand, some						ls/TOC			
0 - 19 19 -29	Dark brown/black fine Dark brown/black fine	e to course sand, some s e to course sand, some t	fine to medium g	ravel, light silt, tra	ace organics (she			ls/TOC			
0 - 19	Dark brown/black fine Dark brown/black fine	e to course sand, some	fine to medium g	ravel, light silt, tra	ace organics (she			ls/TOC			
0 - 19 19 -29	Dark brown/black fine Dark brown/black fine	e to course sand, some s e to course sand, some t	fine to medium g	ravel, light silt, tra	ace organics (she			ls/TOC			
0 - 19 19 -29	Dark brown/black fine Dark brown/black fine	e to course sand, some s e to course sand, some t	fine to medium g	ravel, light silt, tra	ace organics (she			ls/TOC			
0 - 19 19 -29	Dark brown/black fine Dark brown/black fine	e to course sand, some s e to course sand, some t	fine to medium g	ravel, light silt, tra	ace organics (she			ls/TOC			
0 - 19 19 -29 29 - 42	Dark brown/black fine Dark brown/black fine Dark brown/black clay	e to course sand, some e e to course sand, some f yey silt, some fine to cou	fine to medium g urse gravel, trace	ravel, light silt, tra e organics (shells	ace organics (she).	lls)	Select Meta	Is/TOC			
0 - 19 19 -29 29 - 42	Dark brown/black fine Dark brown/black fine Dark brown/black clay	e to course sand, some s e to course sand, some t	fine to medium g urse gravel, trace	ravel, light silt, tra e organics (shells	ace organics (she).	lls)	Select Meta	ls/TOC			
0 - 19 19 -29 29 - 42	Dark brown/black fine Dark brown/black fine Dark brown/black clay	e to course sand, some e e to course sand, some f yey silt, some fine to cou	fine to medium g urse gravel, trace	ravel, light silt, tra e organics (shells	ace organics (she).	lls)	Select Meta	ls/TOC			
0 - 19 19 -29 29 - 42	Dark brown/black fine Dark brown/black fine Dark brown/black clay	e to course sand, some e e to course sand, some f yey silt, some fine to cou	fine to medium g urse gravel, trace	ravel, light silt, tra e organics (shells	ace organics (she).	lls)	Select Meta	ls/TOC			
0 - 19 19 -29 29 - 42	Dark brown/black fine Dark brown/black fine Dark brown/black clay	e to course sand, some e e to course sand, some f yey silt, some fine to cou	fine to medium g urse gravel, trace	ravel, light silt, tra e organics (shells	ace organics (she).	lls)	Select Meta	ls/TOC			
0 - 19 19 -29 29 - 42 COMMENTS	Dark brown/black fine Dark brown/black clay Dark brown/black clay	e to course sand, some e e to course sand, some f yey silt, some fine to cou	fine to medium g urse gravel, trace	ravel, light silt, tra e organics (shells	ace organics (she).	lls)	Select Meta	ls/TOC			
0 - 19 19 -29 29 - 42 COMMENTS	Dark brown/black fine Dark brown/black clay Dark brown/black clay STINATION	e to course sand, some e e to course sand, some f yey silt, some fine to cou	fine to medium g urse gravel, trace	ravel, light silt, tra e organics (shells	ace organics (she).	lls)	Select Meta	ls/TOC			
0 - 19 19 -29 29 - 42 COMMENTS SAMPLE DE Laboratory:	Dark brown/black fine Dark brown/black clay Dark brown/black clay STINATION Columbia Anal	e to course sand, some e e to course sand, some f yey silt, some fine to cou	fine to medium g urse gravel, trace	ravel, light silt, tra	ace organics (she).	lls)	Select Meta	ls/TOC			
0 - 19 19 -29 29 - 42 COMMENTS	Dark brown/black fine Dark brown/black clay Dark brown/black clay STINATION Columbia Anal	e to course sand, some e e to course sand, some f yey silt, some fine to cou	fine to medium g urse gravel, trace	ravel, light silt, tra	ace organics (she).	lls)	Select Meta	ls/TOC			

Station	SED144				Sar	nple Type	Sediment C	oring	
Equipment	Vibracore			-	Sampling F	Personnel	A. Baird, J.	Gutkowski	
Date	10/6/2006			<u>-</u>		Weather			
SEDIMENT	SAMPLE								
	Vater Depth (ft)								
Sa	mple Depth (ft)				5	Sample ID			
	Description								
	gical Analysis								
0	ther Analysis								
WATER QU									
Sample ID				-	58	mple Time			
Depth	DO	Temperature	Salinity	ORP	pН	Sp. Cond.	Turbidity	Flow	Observations
Deptil	(mg/l)	(° C)	(%)	(mV)	pri	(mS/cm)	(NTU)	(ft/s)	Observations
Surface	((0)	(70)	()		(110/011)	(11.0)	(100)	
Bottom									
		1							
SEDIMENT	CORE								
	Vater Depth (ft)	8.0				Sa	ample Time	10:15	
	ation Depth (ft)						Sample ID		
	Recovered (ft)						•		
Ū	.,								
Depth (in)	Description/O	bservation					Analysis		
0 - 36	Dark brown/black	k silt, some clay, li	ttle fine to co	urse sand, tra	ce organics (r	oots).	Select Meta	ls/TOC	
36 - 86	Dark gray/red silf	t, some fine to cou	urse sand, tra	ce organics (r	oots)				
86 - 106	Gray fine to cour	se sand, light silt,	trace organic	s (roots, shell	s)				
COMMENTS	i								

SAMPLE DESTINATION

Laboratory: Columbia Analytical

Delivered Via: Fed Ex

Field Sampling Coordinator: Dave Rigg

Station	SED145				Sa	mple Type	Sediment C	oring	
Equipment					Sampling	Personnel	A. Baird, J.	Gutkowski	
Date	10/5/2006					Weather			
SEDIMENT					0-				
V	vater Depth (ft)				5a				
5a	mple Depth (it)					Sample ID			
	Description								
	Description								
Chen	nical Analysis								
	gical Analysis								
Ó	ther Analysis								
WATER QU	ALITY								
Sample ID					S	ample Time			
Danith	50	T	O all'activa	000		0	Tarah Lalia	-	0
Depth	DO (m m (l))		Salinity	ORP	рН		Turbidity	Flow	Observations
0	(mg/l)	(° C)	(%)	(mV)		(mS/cm)	(NTU)	(ft/s)	
Surface						-			
Bottom									
	ORE								
-	Vater Depth (ft)	10.5				S	ample Time	8.15	
Core Penetr	ation Depth (ft)	10.0				0.	Sample ID		
Core I ength	Recovered (ft)	6.5					oumple ib	OLDING	
Joro Longar									
Depth (in)	Description/O	bservation					Analysis		
) - 43		ft silt, trace fine	sand, trace	organics(sh	ells).		Select Meta	ls/TOC	
43 - 78	Dark brown/bla	ack silt, little clay	, trace orga	nics (shells)					
		•							
COMMENTS									
SAMPLE DE									
	Columbia Anal	ytical							
Delivered Via	⊢ed Ex			Field Sa	ampling Co	oordinator:	Dave Rigg		

Station	SED146				S	ample Type	Sediment C	oring	
Equipment					Sampling	Personnel	A. Baird, J.	Gutkowski	
Date	10/5/2006					Weather			
SEDIMENT									
					S	ample Time			
Sa	mple Depth (ft)					ample Time Sample ID			
							-		
	Description								
Chen	nical Analysis								
BIOIO	gical Analysis								
U	ther Analysis								
WATER QUA									
Sample ID					9	Sample Time	•		
						-			
Depth	DO	Temperature	Salinity	ORP	рН	Sp. Cond.	Turbidity	Flow	Observations
	(mg/l)	(° C)	(%)	(mV)		(mS/cm)	(NTU)	(ft/s)	
Surface									
Bottom									
SEDIMENT (5.5				6	ample Time	10.00	
Core Penetr	Vater Depth (ft) ation Depth (ft)	5.5				30	Sample ID		
	Recovered (ft)						Sample ID	SLD140	
oore Lengui		2.0							
Depth (in)	Description/O	bservation					Analysis		
0 - 17		ack soft silt, little	fine sand, t	race organio	cs (roots)		Select Meta	ls/TOC	
17 - 27	Dark brown/bla	ack fine to cours	e sand, som	ne silt, trace	organics (shells).			
COMMENTS									
COMMENTS									
SAMPLE DE	STINATION								
	Columbia Anal	lytical							
Delivered Via:	Fed Ex			Field Sa	ampling C	oordinator:	Dave Rigg		

Equipment Vibracore Sampling Personnel A. Baird, Date 10/10/2006 Weather A. Baird, SEDIMENT SAMPLE Water Depth (ft) Sample Time
SEDIMENT SAMPLE Sample Depth (ft) Sample Time Sample Depth (ft) Description
Water Depth (ft) Sample Time Sample Depth (ft)
Water Depth (ft) Sample Time Sample Depth (ft)
Description
Description
Chemical Analysis Biological Analysis Other Analysis
Chemical Analysis Biological Analysis Other Analysis
Biological Analysis
Biological Analysis
WATER QUALITY Sample ID Sample Time Depth D0 Temperature Salinity ORP pH Sp. Cond. Turbidity Flow Observations Surface Image: Condition of the second o
WATER QUALITY Sample ID Sample Time Depth DO (mg/l) Temperature (° C) Salinity (%) ORP (mV) pH Sp. Cond. (mS/cm) Turbidity (NTU) Flow (ft/s) Observations Surface Image: Construction of the servation of the servatio of the servatio of the servation of the servatio of the servatio
Sample ID Sample Time Depth DO (mg/l) Temperature (° C) Salinity (%) ORP (mV) pH Sp. Cond. (mS/cm) Turbidity (NTU) Flow (ft/s) Observations Surface Image: Construction of the second
Sample ID Sample Time Depth DO (mg/l) Temperature (° C) Salinity (%) ORP (mV) pH Sp. Cond. (mS/cm) Turbidity (NTU) Flow (ft/s) Observations Surface Image: Conder the second se
Depth DO (mg/l) Temperature (° C) Salinity (%) ORP (mV) pH Sp. Cond. (mS/cm) Turbidity (NTU) Flow (ft/s) Observations Surface <td< td=""></td<>
(mg/l) (° C) (%) (mV) (mS/cm) (NTU) (ft/s) Surface <td< th=""></td<>
(mg/l) (° C) (%) (mV) (mS/cm) (NTU) (ft/s) Surface <td< td=""></td<>
Bottom
Water Depth (ft) 5.6 Sample Time 15:30 Core Penetration Depth (ft) Sample ID SED147 Core Length Recovered (ft) 1.1 Semple ID SED147
Depth (in) Description/Observation Analysis
0 - 3 Cobble/fine to course gravel Water content, atterberg limits, TOC,
3 - 13 Dark gray/black fine to course sand, some silt, little fine to course gravel. specific gravity, grain size, buck density
COMMENTS
SAMPLE DESTINATION
Laboratory: Columbia Analytical
Delivered Via: Fed Ex Field Sampling Coordinator: Dave Rigg

Station	SED149				Sa	mple Type	Sediment C	oring	
Equipment					Sampling	Personnel	A. Baird, J.	Gutkowski	
Date	10/6/2006					Weather			
SEDIMENT S									
v	/ater Depth (ft) nple Depth (ft)				Sa	mple Time			
Sai	nple Depth (ft)					Sample ID			
	Description								
	nical Analysis								
Biolog	jical Analysis								
0	ther Analysis								
WATER QUA	ALITY								
Sample ID					S	ample Time			
		-							
Depth	DO	Temperature	•	ORP	рН		Turbidity		Observations
	(mg/l)	(° C)	(%)	(mV)		(mS/cm)	(NTU)	(ft/s)	
Surface									
Bottom									
SEDIMENT (OPE								
		0.0				6.	mula Tima	10.45	
Coro Donotre	Ater Depth (ft)	9.0				38	mple Time		
Core Penetra	ation Depth (ft)	7.8					Sample ID	SED149	
Core Length	Recovered (ft)	1.8							
Depth (in)	Description/O	bservation					Analysis		
0 - 24		k very soft silt, trad	e organics (r	oots)			Select Meta	ls/TOC	
24 - 49		k silt, little fine to n			s(shells), trac	e clav.	23.000010		
49 - 94		silt, little fine to co							
10 01	Chay/roa chayoy (loo organico (onono, ongrit e				
COMMENTS									
COMMENTS									
-									
SAMPLE DE									
Laboratory:	Columbia Anal	ytical							

Delivered Via: Fed Ex

Field Sampling Coordinator: Dave Rigg

Station	SED150				Sa	mple Type	Sediment C	oring	
Equipment									
Date	10/10/2006					Weather			
SEDIMENT S					-				
v	ater Depth (ft)				Sa	mple Time			
Sa	mple Depth (ft)					Sample ID			
	Description								
	Description								
Chan	nical Analysis								
	gical Analysis								
0	the Analysis								
WATER QU									
Sample ID					s	ample Time	•		
					-				
Depth	DO	Temperature	Salinity	ORP	рH	Sp. Cond.	Turbidity	Flow	Observations
	(mg/l)	(° C)	(%)	(mV)		(mS/cm)	(NTU)	(ft/s)	
Surface		\/	(**)	. /		()	\/	(/	
Bottom									
Core Penetra	CORE /ater Depth (ft) ation Depth (ft) Recovered (ft)	10.0				Sa	ample Time Sample ID		
Donth (in)	Decerimtics /0						Analysia		
Depth (in)	Description/O	k soft silt, light fi	ing good tra		(rooto obo		Analysis	nt attarba	g limits, TOC,
72 - 90		vn fine to mediu							ize, buck density
2-30	Dark gray/biov		in sand, ligh	it siit, trace c	nganics (si	10113).	specific gra	vity, grain s	
COMMENTS									
SAMPLE DE	STINATION								
Laboratory	Columbia Anal	lytical							
Delivered Via:		, ,		Field Sa	ampling Co	oordinator:	Dave Rigg		

Station	SED151				S	ample Type	Sediment C	oring	
Equipment					Sampling	Personnel			
Date	10/6/2006					Weather			
SEDIMENT					-				
V	Vater Depth (ft) mple Depth (ft)				S	ample Time			
Sa	mple Depth (ft)					Sample ID			
	Description								
	nical Analysis								
Biolog	gical Analysis								
C	Other Analysis								
WATER QU	ALITY								
Sample ID						Sample Time	•		
						-			
Depth	DO	Temperature	Salinity	ORP	рΗ	Sp. Cond.	Turbidity	Flow	Observations
	(mg/l)	(° C)	(%)	(mV)		(mS/cm)	(NTU)	(ft/s)	
Surface									
Bottom									
Core Penetra	CORE Vater Depth (ft) ation Depth (ft) Recovered (ft)	10.0				Sa	ample Time Sample ID		
Depth (in)	Description/O						Analysis		
0 - 46		soft silt, trace org	anics (shells)				Select Meta		
46 - 68		/red clayey silt trad					001001.11010		
68 - 99		clayey silt, little or			fine to medi	um sand.			
COMMENTS									
COMMENTS	S								
SAMPLE DE Laboratory Delivered Via	: Columbia Anal	ytical		Field Sa	ampling C	oordinator:	Dave Rigg		

Station	SED152				Sa	ample Type	Sediment C	oring	
Equipment					Sampling	Personnel	A. Baird, J.	Gutkowski	
Date	10/6/2006					Weather			
SEDIMENT					6				
V So	water Depth (ft)				58	ample Time			
34	inple Depth (it)					Sample ID			
	Description	l							
Chen	nical Analysis								
	gical Analysis								
C	Other Analysis								
WATER QU						Somalo Timo			
Sample ID					,	Sample Time			
Depth	DO	Temperature	Salinity	ORP	pН	Sp. Cond	Turbidity	Flow	Observations
	(mg/l)	(° C)	(%)	(mV)	P	(mS/cm)	(NTU)	(ft/s)	• • • • • • • • • • • • • • • • • • • •
Surface	((-)	() • • /	()		((()	
Bottom									
Core Penetra	Vater Depth (ft) ation Depth (ft)	8.0 10.0 7.0				Sa	ample Time Sample ID	12:30 SED152	
Depth (in)	Description/C	bservation					Analysis		
0 - 16		some fine to cours	e sand, little f	ine to course	gravel.		Select Meta		
16 - 22	Brick, slight odor		,		0				
22 - 34	Dark brown/blac	k fine to course sa	nd, some silt,	trace glass fr	agments, sli	ight odor.			
34 - 56	Dark brown silt,	some sand, slight	odor.						
56 - 84	Dark brown fine	to course sand, si	ne silt, trace o	rganics (shell	s).				
COMMENTS	8								
SAMPLE DE Laboratory Delivered Via	: Columbia Ana	lytical		Field S	ampling C	oordinator:	Dave Rigg		

Station	SED153				Sa	ample Type	Sediment C	oring	
Equipment					Sampling	Personnel	A. Baird, J.	Gutkowski	
Date	10/6/2006					Weather			
SEDIMENT					6				
V So	Vater Depth (ft) mple Depth (ft)				58	ample Time			
34	inple Depth (it)					Sample ID			
	Description								
	Description								
Chen	nical Analysis								
Biolog	gical Analysis								
Ċ	ther Analysis								
WATER QU	ALITY								
Sample ID					2	Sample Time			
Depth	DO	Temperature	Salinity	ORP	pH	Sn Cond	Turbidity	Flow	Observations
Depth	(mg/l)	(° C)	(%)	(mV)	рп	(mS/cm)	(NTU)	(ft/s)	Observations
Surface	(mg/i)	(°C)	(70)	(1117)		(IIIS/CIII)	(1110)	(105)	
Bottom									
-	CORE Vater Depth (ft) ation Depth (ft) Recovered (ft)					Sa	ample Time Sample ID		
Depth (in)	Description/O	bservation					Analysis		
0 - 55		soft silt, trace org	anics (roots, v	egitation, she	ells), clav		Select Meta		
55 - 102		clayey silt, little fi				s).			
	0 7			, ,		,			
COMMENTS	s								
SAMPLE DE	STINATION								
-	: Columbia Anal	vtical							
Delivered Via		9.1001		Field S	ampling C	oordinator:	Dave Rigg		
					pig O		2410 1199		

Station	SED154				Sa	ample Type	Sediment C	oring	
Equipment					Sampling	Personnel	A. Baird, J.	Gutkowski	
Date	10/5/2006					Weather			
SEDIMENT					-				
1	Water Depth (ft) mple Depth (ft)				Sa	ample Time		<u> </u>	
5a	imple Depth (ft)					Sample ID			
	Description								
	Description								
Cher	nical Analysis								
Biolo	gical Analysis								
C	Other Analysis								
WATER QU									
Sample ID					:	Sample Time			
Depth	DO	Temperature	Salinity	ORP	pH	Sn Cond	Turbidity	Flow	Observations
Deptil	(mg/l)	(° C)	(%)	(mV)	рп	(mS/cm)	(NTU)	(ft/s)	Observations
Surface	(119/1)	(0)	(70)	(1117)		(mo/cm)	(1110)	(103)	
Bottom									
Core Penetr	CORE Vater Depth (ft) ation Depth (ft) Recovered (ft)	5.5				Sa	ample Time Sample ID	12:45 SED154	
Depth (in)	Description/O	bservation					Analysis		
0 - 24		silt, little fine to me	dium sand, tr	ace fine to co	urse gravel,	wet.	Select Meta		
24 - 48		•							
COMMENTS	S								
COMMENT	,								
SAMPLE DE	ESTINATION								
	: Columbia Anal	lytical							
Delivered Via	: Fed Ex			Field Sa	ampling C	oordinator:	Dave Rigg		

Station	SED155				S	ample Type	Sediment C	oring	
Equipment	Vibracore				Sampling	Personnel			
Date	10/6/2006					Weather			
SEDIMENT S									
v	Vater Depth (ft)				S	ample Time			
Sa	mple Depth (ft)					Sample ID			
	Description								
	nical Analysis								
Biolog	gical Analysis								
0	ther Analysis								
WATER QUA	ALITY								
Sample ID					ę	Sample Time			
Depth	DO	Temperature	Salinity	ORP	рН	Sp. Cond.	Turbidity	Flow	Observations
	(mg/l)	(° C)	(%)	(mV)		(mS/cm)	(NTU)	(ft/s)	
Surface									
Bottom									
SEDIMENT (V Core Penetra Core Length	CORE Vater Depth (ft) ation Depth (ft) Recovered (ft)	8.0 10.0 7.8				Sa	mple Time Sample ID		
Depth (in)	Description/O	bservation					Analysis		
0 - 32		soft silt, trace fine	sand.				Select Meta	ls/TOC	
32 - 70	Dark gray clayey	silt, trace organic	s (roots, shell	s).					
70 - 94	Dark gray/black	clayey silt, little fin	e to course sa	and, trace org	anics (shells	s).			
-									
COMMENTS									
SAMPLE DE Laboratory Delivered Via:	Columbia Anal	ytical		Field Sa	ampling C	oordinator:	Dave Rigg		

ARCADIS

Appendix C

Statistical Calculations and Analysis

Sediment Remedial Investigation Report Former General Motors North Tarrytown Assembly Plant Sleepy Hollow, New York

ARCADIS Former GM Tarrytown Assembly Plant Site Sediments 2006 Prepared by Phil Goodrum Updated March 7, 2007

Table C-1. Summary statistics for background data sets from 0-0.5 ft depth interval. [6]

	Sa	mple Size	[1]		Rar	ige				D	istribution Ar	nalysis		BSL [4]		
Metal	Ν	Detects	ND	FOD %	Min	Max	Mean	SD	CV	Dist. Type	Critical Value	Test Statistic [2]	Method	(95/95 UTL)	(99/95 UTL)	Comments [5]
Chromium	11	11	0	100%	8.4	89.4	35.0	21.3	0.607	Ν	0.85	0.86	N	95	111	Data are normal or lognormal; LN BSL
										LN	0.85	0.96	LN	168	265	is approx. 3 x max. Note max is extreme value based on Q-Q plot.
Copper	11	11	0	100%	8.3	75.1	31.4	22.2	0.707	Ν	0.85	0.89	N	94	110	
										LN	0.85	0.94	LN	204	357	is approx. 4 x max.
Lead	11	11	0	100%	6.3	87.2	37.3	30.9	0.828	Ν	0.85	0.84	N	NA	NA	Data are lognormal; BSL is approx. 9 x
										LN	0.85	0.90	LN	372	752	max. Data are not normal. Non- parametric is more repesentative.
										NP	NA	NA	NP	87	87	
Mercury	11	9	2	82%	0.08	0.99	0.43	0.32	0.751	Ν	0.83	0.909	N	1.30	1.54	GOF on detects only suggests data are normal or lognormal. MLE is preferred
							0.32	0.37	1.136	NA	NA	NA	MLE	1.36	1.63	over normal for censored data. NP
							0.43	0.32	0.751	LN	0.83	0.953	LN	7.63	19.89	
							0.36	0.33	0.917	NA	NA	NA	Robust ROS	5.77	13.67	similar result; but parametric result is sufficient based on dist. analysis.
							0.37	0.31	0.839	NP	NA	NA	Kaplan Meier [3]	1.23	1.46	
Zinc	11	11	0	100%	28.7	205	104.6	55.9	0.534	Ν	0.85	0.96	N	262	303	Data are normal or lognormal; LN BSL
										LN	0.85	0.96	LN	495	775	is approx. 4 x max.

Notes

1. Small sample size (N=11) is too small for non-parametric methods to achieve desired coverage. Coverage = 1-1/(N+1) = 91.7%; minimum sample size of N=19 is needed to achieve 95% coverage.

2. GOF tests for normality and lognormality are based on Shapiro Wilk Test at alpha = 0.05.

3. Kaplan Meier is a non-parametric technique that derives adjusted mean and standard deviation parameter estimates based on FOD % and detected values.

4. "Best estimate" is given in bold. Note that parametric 99/95 UTLs all exceed maximum value; extrapolation introduces uncertainty.

5. Parametric 99/95 UTLs all exceed maximum value; extrapolation introduces uncertainty and deference is given to normal.

6. Data are from stations: SED100 - SED 110. Result for SED109 represents average of field duplicate and field sample.

99/95 UTL = 99 percent upper confidence limit for the 95th percentile

BSL = background screening level

FOD % = frequency of detects percentage

LN = lognormal

MLE = maximum likelihood estimate

N = normal

NA = not applicable

NP = non parametric

ROS = regression on ordered statistics

Sediment Remedial Investigation Report Former General Motors North Tarrytown Assembly Plant Sleepy Hollow, New York

ARCADIS Former GM Tarrytown Assembly Plant Site Sediments 2006

Prepared by Phil Goodrum

Table C-2. Comparison of BSL to site data for 0-0.5 ft depth interval (Near Site Area).

	BS	L [1]	Backgro	und [2]						Si	te [3]	
Metal	Method	(99/95 UTL)	Min	Max	N [4]	Min	Max	Mean	SD	Prob > BSL	# Stations > BSL	Stations > BSL
Chromium	Ν	111	8.4	89.4	31	13.8	148	58	29	3%	1	SED126
Copper	N	110	8.3	75.1	31	9.3	152	70	37	19%	U U	SED123, SED125, SED126, SED130, SED132, SED136
Lead	NP	87	6.3	87.2	31	10.2	1,520	120	262	32%	10	SED117, SED121, SED123, SED125, SED126, SED130, SED131, SED132, SED133, SED136
Mercury	N (MLE)	1.6	0.08	0.99	31	0.04	2.60	0.92	0.71	13%	4	SED123, SED131, SED132, SED134
Zinc	Ν	303	28.7	205	31	43.1	1,260	192	207	3%	1	SED126

<u>Notes</u>

1. See Table 1 for details regarding BSL derivation.

2. Background data are from stations: SED100 - SED 110. Result for SED109 represents average of field duplicate and field sample.

3. Site Data results are for Field Samples only (duplicates are not averaged) and includes non-detects.

4. Data for 0-0.5 ft depth interval are from 29 stations in Near Site Area only. For 2 of 29 stations (SED111 and SED113) two samples were collected at different sampling dates.

99/95 UTL = 99 percent upper confidence limit for the 95th percentile

BSL = background screening level

FOD % = frequency of detects percentage

LN = lognormal

MLE = maximum likelihood estimate

N – normal

NA = not applicable

NP = non parametric

ROS = regression on ordered statistics

Sediment Remedial Investigation Report Former General Motors North Tarrytown Assembly Plant Sleepy Hollow, New York

ARCADIS Former GM North Tarrytown Assembly Plant Site Sediments 2006 Prepared by Carolyn Meyer, Phil Goodrum May 10, 2007

Table C-3. Summary statistics for background data sets for pore water. [1]

		Sample	Size	[2]		Summa	ary Statis	tics [3]		Distr	ibution Analy	/sis [4]	B	SL [5, 6]		
Metal	n	Detects	ND	FOD %	Min	Max	Mean	SD	CV	Dist. Type	Critical Value	Test Statistic	Method	95/95 UTL	99/95 UTL	Comments
Chromium	9	9	0	100%	0.0033	0.0081	0.0055	0.0017	0.31	N	0.83	0.93	N	0.0106	0.0122	Data are normal or lognormal; LN BSL 99/95 is approx. 2 x max.
										LN	0.83	0.93	LN	0.0138	0.0186	99/95 is approx. 2 x max.
Copper	9	9	0	100%	0.0037	0.01125	0.0075	0.0030	0.40	Ν	0.83	0.88	Ν	0.0165	0.0193	Data are normal or lognormal; LN BSL
										LN	0.83	0.89	LN	0.0251	0.0374	is approx. 3 x max.
Lead	9	4	5	44%	0.0030	0.0071	0.0053	0.0017	0.33	Ν	0.83	0.89	Ν	0.0101	0.0123	Data are normal or lognormal using ROS; LN BSL is approx. 6 x max.
							0.0027	0.0029	1.08	NA	NA	NA	MLE	0.0115	0.0142	Detects < 5 so use maximum instead of
							0.0053	0.0017	0.33	LN	0.83	0.96	LN	0.0202	0.0384	KM or others
							0.0033	0.0022	0.67	NA	NA	NA	Robust ROS	0.0223	0.0431	
							0.0042	0.0014	0.34	NP	NA	NA	KM or Maximum	0.0071	0.0071	
Zinc	9	1	9	11%	0.0022	0.0042	0.0042	N/A	N/A	N	0.83	0.93	Ν	0.0047	0.0057	Data are not normal or lognormal using ROS: Detects < 5 so use maximum
							NA	NA	NA	NA	NA	NA	MLE	NA	NA	instead of KM or others
							0.0042	NA	NA	LN	0.83	0.97	LN	0.0058	0.0089	
							NA	NA	NA	NA	NA	NA	Robust ROS	NA	NA	
							0.0042	NA	NA	NP	NA	NA	KM or Maximum	0.0042	0.0042	

Notes

1. Data are from stations: SED101 - SED 109. Result for SED109 represents average of field duplicate and field sample.

2. Sample size is too small for non-parametric methods to achieve desired coverage. Coverage = 1-1/(n+1) = 90% for n=9; minimum sample size of n=19 is needed to achieve 95% coverage.

3. For lead and zinc, minimum and maximum include non-detects; mean, SD, and CV are method-specific where N and LN statistics are based on detects only, and MLE, ROS, and KM generate adjusted parameter estimates based on detected values and FOD% (see USEPA, 2006).

4. GOF tests for normality and lognormality are based on Shapiro Wilk Test at alpha = 0.05.

5. "Best estimate" is given in bold.

6. Parametric 99/95 UTLs all exceed maximum value; extrapolation introduces uncertainty and deference is given to normal.

BSL = background screening level; CV = coefficient of variation (SD/mean); FOD % = frequency of detects percentage; KM = Kaplan Meier; LN = lognormal; MLE = maximum likelihood estimate; n = sample size; N = normal; NA = not applicable; NP = non parametric; ROS = regression on ordered statistics; SD = standard deviation; 99/95 UTL = 99 percent upper confidence limit for the 95th percentile

USEPA. 2006. On the Computation of 95% Upper Confidence Limit of the Unknown Population Mean Based Upon Data Sets with Below Detection Limit Observations. Prepared by A. Singh, R.W. Maichle, and S.E. Lee for USEPA ORD NERL, Las Vegas, NV. EPA/600/R-06/22. March.

Sediment Remedial Investigation Report Former General Motors North Tarrytown Assembly Plant

ARCADIS	Former GM North Tarrytown Assembly Plant Site Sediments 2006
	Prepared by Carolyn Meyer, Phil Goodrum May 10, 2007

Table C-4. Comparison of BSL to site data for pore water (Near Site Area). [1]

	B	SL [1]	Backgro	und [2]					5	Site [3]		
Metal	Method	(99/95 UTL)	Min	Max	n [4]	Min	Max	Mean	SD	Prob > BSL	# Stations > BSL	Stations > BSL
Chromium	N	0.0122	0.0033	0.0081	27	0.0053	0.0207	0.0083	0.0034	7%	2	SED132, SED134
Copper	N	0.0193	0.0037	0.01125	27					4%	1	SED134
						0.0041	0.0195	0.0082	0.0048			
Lead	NP	0.0071	0.003	0.0071	27					7%	2	SED114, SED134
						0.0030	0.0144	0.0041	0.0024			
Zinc	NP	0.0042	0.0022	0.0042	27	0.0022	0.0155	0.0027	0.0026	4%	1	SED134

<u>Notes</u>

1. Background data are from stations: SED101 - SED 109. Result for SED109 represents average of field duplicate and field sample.

2. See Table A-3 for details regarding BSL derivation.

3. Site Data results are for Field Samples and includes non-detects.

4. There are 27 stations (N) in Near Site Area.

BSL = background screening level; n = total sample size (including non-detects); N = normal distribution; NP = nonparametric; 99/95 UTL = 99 percent upper confidence limit for the 95th percentile

ARCADIS

Appendix D

Final Report Radiological Sediment Chronology Sediment Characterization – Geonuclear/Mass Spec Services

Mass Spec Services Division of Geonuclear, Inc. 103 South Greenbush Road Orangeburg, NY 10962

11/30/06

Final Report

Radiological Sediment Chronology

Sediment Characterization

Former GM Plant Site - Sleepy Hollow, NY

Tarrytown, NY

Project 64462.037

Project Manager:	Raymond Kapp	Blasland, Bouck , and Lee, Inc.
Field Leader:	Jo Ann Robertson	Blasland, Bouck , and Lee, Inc.
Chemist:	Deborah Andrasko	Conestoga-Rovers & Associates
Lab Project Manager:	Hewitt Jeter	Mass Spec Services, Division of Geonuclear, Inc.
Analytical Methods:		ing the Ages of Recent Sediments Using activity", Terra Et Aqua, 78, pp. 21-28

MASS SPEC SERVICES Division of Geonuclear, Inc. P.O. Box 163 Orangeburg, NY 10962

11/30/06

Blasland, Bouck & Lee, Inc. 6923 Towpath Road Syracuse, NY 13214-0066

REPORT NARRATIVE

Sediment chronology radiochemical analyses Project 64462.037, GM Tarrytown MSS Work Orders Pb0118, Pb0119, Pb0120, Pb0121

Received sediment samples in glass jars, delivered by BBL personnel, on 10/05/06, 10/11/06, and 10/12/06. The samples were in good condition and were accompanied by chain-of-custody (COC) documents. Verified that the numbering of all sample jars conformed to the COC forms, and signed the forms. Assigned MSS Work Orders Pb0118 through Pb0121 to the samples, each containing a maximum of 20 field samples to constitute an analytical batch. The COC documents specified that most of the samples were to be analyzed for Pb-210, Cs-137, and Be-7, while others were to be held in archive.

Assigned MSS sample numbers and entered them on the COC forms. Wrote the MSS sample numbers on the corresponding sample jars. Sent PDF copies of the completed COC forms to CRA as required. Dried the samples for 2 days in a laboratory oven. Pulverized the dried samples with a mortar and pestle to a fine powder and returned the samples to the numbered jars.

Weighed a portion of each sample (near 9 grams) for Pb-210 analysis into a labeled beaker. Also prepared laboratory control samples consisting of soil matrix spikes and water blanks. Other portions of the dried and pulverized samples designated for Cs-137 and Be-7 analyses were sent to the Environmental Inc. Midwest Laboratory for gamma spectral analysis according to the laboratory's SOP. Those analyses were performed from 10/12/06 to 11/22/06.

Radiochemical separations for the Pb-210 analyses were performed at Mass Spec Services from 10/10/06 to 11/08/06, according to the laboratory's SOP. The resulting mounted precipitates were sent to the Environmental Inc. Midwest Laboratory and were analyzed on beta detectors from 10/12/06 to 11/09/06. Laboratory control spikes and blanks processed with the Pb-210 analytical groups produced satisfactory results. Laboratory control blanks and spikes analyzed by gamma spectral methods at the Midwest Laboratory also produced satisfactory results. Check source and blank performance tests of both the beta and the gamma detectors at the laboratory were satisfactory during the analysis periods. Standard calibration and quality control procedures were observed during all phases of the analyses. No non-conformances were observed.

Summary reports of analytical results and quality control results, as well as sediment chronology interpretations, were sent to the project manager Raymond Kapp as PDF files on 10/23, 10/26, 11/13, 11/16, 11/21, and 11/29/06. Final reports, including this narrative, are being sent to CRA and BBL as PDF files on 11/30/06. Electronic deliverables (EDD) are being entered into the CRA data system.

Hewitt W. Jeter MSS Project Manager

Blasland, Bouck &Lee, Inc. 6723 Towpath Road Syracuse, NY 13214-0066	.e, Inc. -0066	MASS (P.O. Box 16) Re	P.O. Box 163, Orangeburg, NY 10962 Report of Analysis	RVICES g, NY 10962 sis	·	Report Date: MSS No.: Project:	10/23/06 Pb0118 64462.037 GM Tarrytown
Attn:	Raymond Kapp		Sequence		Ţ	Samples Rec'd: Task Supervisor:	10/05/06 H. Jeter
			Radiometric Re	Radiometric Results in pCi/g dry		Beta	Gamma
MSS No.	Identity	Depth, in	Pb-210	Cs-137	Be-7	Count	Count
Pb0118-1 Ph0118-2	SED123(0-2)GC10042006 SED123(2-4)GC10042006	0-2 2-4	1.70 ± 0.14 1.61 + 0.15	0.186 ± 0.074 0 199 + 0 034	< 0.37 < 0.28	10/12/06 10/12/06	10/12/06 10/12/06
Pb0118-3	SED123(4-6)GC10042006	- 9-	1.22 ± 0.13	0.185 ± 0.049	< 0.35	10/12/06	10/13/06
Pb0118-4	SED123(6-8)GC10042006	6-8	0.65 ± 0.11	0.092 ± 0.049	< 0.37	10/12/06	10/14/06
Pb0118-5	SED123(8-10)GC10042006	8-10	0.69 ± 0.11	< 0.037	< 0.32	10/12/06	10/14/06
Pb0118-6	SED123(10-12)GC10042006	10-12	0.72 ± 0.11	< 0.036	< 0.29	10/12/06	10/11/06
Pb0118-7	SED123(16-20)GC10042006	16-20	0.78 ± 0.11	< 0.031	< 0.35	10/12/06	10/11/06
Pb0118-8	SED123(24-28)GC10042006	24-28	\cap	< 0.049	< 0.32	10/12/06	10/14/06
Pb0118-9	SED123(32-36)GC10042006	32-36	0.54 ± 0.10	< 0.037		10/12/06	10/14/06
Pb0118-10	SED123(40-44)GC10042006	40-44	0.76 ± 0.10	< 0.028	< 0.31	10/12/06	10/14/06
Pb0118-11	SED123(48-52)GC10042006	48-52	0.73 ± 0.10	< 0.028	< 0.34	10/12/06	10/16/06
Pb0118-12	SED123(56-60)GC10042006	56-60 64.80	+1 -	< 0.042		10/12/06	10/1 //01
Pb0118-13	SED123(64-68)GC10042006	64-68 50 50	++	< 0.034	 0.34 24 	10/12/06	10/16/06
Pb0118-14	SED123(72-76)GC10042006	72-76	+1 -	< 0.024	< 0.23	10/12/06	10/19/06
PDU118-15	SED123(80-84)GC10042006	80-84 80 00	0.48 ± 0.09	< 0.01/	CC 0 v	00/21/01	10/1/100
Pb0118-16	SED123(88-92)GC10042006	88-92	+1 -	< 0.031		90/71/01	90/71/01
Pb0118-17	SED123(96-100)GC10042006	96-100	0.33±0.07	< 0.036	< U.37	10/12/06	10/18/06
Pb0118-18	SED104(0-2)GC10052006	0-2	1.21 ± 0.12	0.113 ± 0.043	< 0.37	10/12/06	10/18/06
Pb0118-19	SED104(2-4)GC10052006	2-4	1.12 ± 0.11	0.157 ± 0.026	< 0.31	10/12/06	10/15/06
Pb0118-20	SED104(4-6)GC10052006	4-6	0.67 ± 0.10	0.207 ± 0.047	< 0.27	10/12/06	10/16/06
	Target Detection Limits:		0.1 pCi/g	Bismuth Beta Counting Method	Inting Metho	pc	
		US-13/ Be-7	u. 1 pc//g 1.0 pCi/g	oamma opeciral Analysis Gamma Spectral Analysis	Analysis Analysis	\langle	
Tolerances are Detection limits	Tolerances are 2 sigma counting uncertainties. Detection limits are at the 4.66 sigma level.				,	Hewitt	Hewitz W. Jeter

m

MASS SPEC SERVICES Division of Geonuclear, Inc	VVICES luclear, Inc				Work Order Pb0118	118
GM Tarrytown Project Number:	64462.037		Pb-210 Spike and Blank	ž		
MSS No.	Sample Identity	Matrix	Count Date	Pb-210 Result	Expected	Units
SSP-49	Soil Matrix Spike	Soil	10/12/06	9.48 ± 0.40	9.74 ± 0.10	pCi/g dry
WBL-74	Water Blank	Water	10/12/06	< 0.09	Non detect	pCi/g wet
	SSP-49 spike level:	: 9.12 pCi/g spike +	+ 0.62 ± 0.10 pCi/g from matrix	from matrix =	9.74 ± 0.10 pCi/g expected	expected
			Cs-137 Spike and Blank	¥		
MSS No.	Sample Identity	Matrix	Count Date	Cs-137 Result	Expected	Units
SPSPK-1 SPBKG-1	Water Spike Water Blank	Water Water	10/15/06 10/11/06	19.57 ± 0.25 < 0.050 Be-7 < 0.34	19.61 Non detect Non detect	pCi/g wet pCi/g wet pCi/g wet

REPORT OF LABORATORY CONTROL SAMPLES

ナ

Blasland, Bouck &Lee, Inc. 6723 Towpath Road Syracuse, NY 13214-0066	ck &Lee, Inc. Road 13214-0066	MASS (P.O. Box 160 Re	MASS SPEC SERVICES P.O. Box 163, Orangeburg, NY 109 Report of Analysis	RVICES rg, NY 10962 ysis		Report Date: MSS No.: Project:	10/25/06 Pb0119 64462.037 GM Tarrytown
Attn:	Raymond Kapp		Sediments	10	Sa Tasl	Samples Rec'd: Task Supervisor:	10/05/06 H. Jeter
			Radiometric R	Radiometric Results in pCi/g dry		Beta	Gamma
MSS No.	Identity	Depth, in	Pb-210	Cs-137	Be-7	Count	Count
Pb0119-1	SED103(0-2)GC10052006	0-2	0.94 ± 0.12	0.246 ± 0.064	< 0.39	10/19/06	10/20/06
PD0118-2	SED 103(2-4)GC 10032000 SED 103(1 8)GC 10052006	4 4	0.40 ± 0.10	0.17.0 ± 0.07.1 < 0.037	× 0.24	10/19/00	10/17/06
Pb0119-3	SED103(6-8)GC10052006	- 90 - 100	0.28 ± 0.09	< 0.047	< 0.23	10/19/06	10/21/06
Pb0119-5	SED103(8-10)GC10052006	8-10	0.39 ± 0.09	< 0.031	< 0.30	10/19/06	10/22/06
Pb0119-6	SED103(10-12)GC10052006	10-12	0.38 ± 0.10	< 0.037	< 0.28	10/19/06	10/19/06
Pb0119-7	SED103(16-20)GC10052006	16-20	0.30±0.09	< 0.034	< 0.28	10/19/06	10/23/06
Pb0119-8	SED103(24-28)GC10052006	24-28	0.39 ± 0.09	< 0.036	< 0.31	10/19/06	10/22/06
Pb0119-9	SED103(32-36)GC10052006	32-36	0.40 ± 0.10	< 0.043	< 0.24	10/19/06	10/22/06
Pb0119-10	SED103(40-44)GC10052006	40-44	0.38 ± 0.09	< 0.047	< 0.26	10/19/06	10/22/06
Pb0119-11	SED103(48-52)GC10052006	48-52	+1	< 0.031	< 0.26	10/19/06	10/22/06
Pb0119-12	SED103(56-60)GC10052006	56-60	+1	< 0.036	< 0.30	10/19/06	10/23/06
Pb0119-13	SED103(64-68)GC10052006	64-68	0.41 ± 0.09	< 0.034	< 0.26	10/19/06	10/21/06
Pb0119-14	SED103(72-76)GC10052006	72-76	H	< 0.032	< 0.32	10/19/06	10/21/06
Pb0119-15	SED103(80-86)GC10052006	80-86	0.39 ± 0.09	< 0.022	< 0.23	10/19/06	10/21/06
Pb0119-16	SED104(6-8)GC10052006	6-8 8-0	0.59 ± 0.10	0.431 ± 0.058	< 0.36	10/19/06	10/22/06
Pb0119-17	SED104(8-10)GC10052006	8-10	0.44 ± 0.08	0.113 ± 0.025	< 0.31	10/19/06	10/21/06
Pb0119-18	SED104(10-12)GC10052006	10-12	0.48 ± 0.09	< 0.031	< 0.24	10/19/06	10/23/06
Pb0119-19	SED104(16-20)GC10052006	16-20	+1	< 0.037	< 0.30	10/19/06	10/21/06
Pb0119-20	SED104(24-28)GC10052006	24-28	0.42 ± 0.09	< 0.032	< 0.33	10/19/06	10/17/06
	Target Detection Limits:	Pb-210 Cs-137 Be-7	0.1 pCi/g 0.1 pCi/g 1.0 pCi/g	Bismuth Beta Counting Method Gamma Spectral Analysis Gamma Spectral Analysis	Inting Method Analysis Analysis		
Tolerances are Detection limits	Tolerances are 2 sigma counting uncertainties. Detection limits are at the 4.66 sigma level.				I	A Hewitz	Hewitz W. Jeter
הפובטוטוו ווווויים	מוב מו גווב ל.טט אולווומ ובעבו.						N. 00101

MASS SPEC SERVICES Division of Geonuclear, Inc	tvices iuclear, inc				Work Order Pb0119	<u>0</u>
GM Tarrytown Project Number:	64462.037	e	Pb-210 Spike and Blank	*		
MSS No.	Sample Identity	Matrix	Count Date	Pb-210 Result	Expected	Units
SSP-50	Soil Matrix Spike	Soil	10/19/06	10.95 ± 0.47	10.56 ± 0.10	pCi/g dry
WBL-75	Water Blank	Water	10/19/06	< 0.08	Non detect	pCi/g wet
	SSP-50 spike level: 9.94 pCi/g spike +	9.94 pCi/g spike +	(0.62 ± 0.10) pCi/g from matrix	from matrix =	10.56 ± 0.10 pCi/g expected	expected
		Ö	Cs-137 Spike and Blank	×		
MSS No.	Sample Identity	Matrix	Count Date	Cs-137 Result	Expected	Units

REPORT OF LABORATORY CONTROL SAMPLES

pCi/g wet pCi/g wet

Non detect Non detect

< 0.059 Be-7 < 0.38

pCi/g wet

19.61

19.37 ± 0.65

10/19/06

Water

Water Spike

SPSPK-1

10/19/06

Water

Water Blank

SPBKG-1

MASS SPEC SERVICES

P.O. Box 163, Orangeburg, NY 10962 Report of Analysis

Sediments

64462.037 GM Tarrytown

Project:

MSS No.:

11/21/06 Pb0120

Report Date:

10/05/06 H. Jeter

Samples Rec'd: Task Supervisor:

Raymond Kapp

Attn:

Radiometric Results in pCi/g dry

					Beta	Gamma
Identity	Depth, in	Pb-210	Cs-137	Be-7	Count	Count
SED104(32-36)GC10052006	32-36	0.47 ± 0.11	< 0.040	< 0.51	11/02/06	11/12/06
SED104(40-44)GC10052006	40-44	0.41 ± 0.13	< 0.047	< 0.58	11/02/06	11/12/06
SED104(48-52)GC10052006	48-52	0.44 ± 0.12	< 0.037	< 0.49	11/02/06	11/14/06
SED126(0-2)GC10102006	0-2	0.31 ± 0.11	0.053± 0.027	< 0.45	11/02/06	11/13/06
SED126(2-4)GC10102006	2-4	0.44 ± 0.12	0.082± 0.021	< 0.35	11/02/06	11/13/06
SED126(4-6)GC10102006	4-6	1.01 ± 0.14	0.186± 0.048	< 0.44	11/02/06	11/14/06
SED126(6-8)GC10102006	6-8	1.03 ± 0.13	0.276± 0.054	< 0.48	11/02/06	11/14/06
SED126(8-10)GC10102006	8-10	0.83 ± 0.15	0.299± 0.033	< 0.36	11/02/06	11/14/06
SED126(10-12)GC10102006	10-12	0.95 ± 0.14	0.234± 0.032	< 0.39	11/02/06	11/15/06
	0-2	2.15 ± 0.27	0.244± 0.099	< 1.12	11/02/06	11/15/06
SED128(2-4)GC10122006	2-4	2.14 ± 0.17	0.207± 0.053	< 1.02	11/02/06	11/15/06
	4-6	2.33 ± 0.19	0.460± 0.175	< 1.05	11/02/06	11/16/06
SED128(6-8)GC10122006	6-8	1.75 ± 0.14	0.242± 0.055	< 0.64	11/02/06	11/16/06
SED128(8-10)GC10122006	8-10	1.99 ± 0.16	0.250± 0.042	< 0.39	11/02/06	11/16/06
SED128(10-12)GC10122006	10-12	2.12 ± 0.14	0.283± 0.067	< 0.66	11/02/06	11/16/06
SED128(16-20)GC10122006	16-20	1.60 ± 0.15	0.254± 0.080	< 0.65	11/02/06	11/17/06
SED128(24-28)GC10122006	24-28	0.72±0.09	0.448± 0.071	< 0.71	11/02/06	11/17/06
SED128(32-36)GC10122006	32-36	1.71 ± 0.15	0.434± 0.036	< 0.49	11/02/06	11/17/06
SED128(40-44)GC10122006	40-44	0.65 ± 0.10	0.801± 0.068	< 0.30	11/02/06	11/17/06
SED128(48-52)GC10122006	48-52	0.69 ± 0.10	< 0.041	< 0.39	11/02/06	11/18/06

Tolerances are 2 sigma counting uncertainties. Detection limits are at the 4.66 sigma level.

Hewitt W. Jeter Bismuth Beta Counting Method Gamma Spectral Analysis Gamma Spectral Analysis ۲

0.1 pCi/g 0.1 pCi/g 1.0 pCi/g

Target Detection Limits: Pb-210 Cs-137 Be-7

REPORT OF I ABORATORY CONTROL SAMPLES

pCi/g wet pCi/g wet

non detect non detect

< 0.052 Be-7 < 0.44

11/12/06

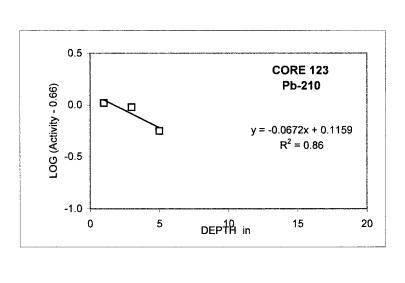
Water

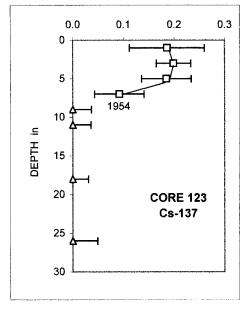
Water Blank

SPBKG-1

		MASS	MASS SPEC SERVICES	RVICES		Report Date:	11/29/06
Blasland, Bouck & Lee, Inc.		P.O. Box 16:	P.O. Box 163, Orangeburg, NY 10962	g, NY 10962		MSS No.:	Pb0121
6723 Towpath Road		Re	Report of Analysis	sis		Project:	64462.037
Syracuse, NY 13214-0066	13214-0066						GM Tarrytown
			Sediments		Sa	Samples Rec'd:	10/12/06
Attn:	Raymond Kapp				Tas	Task Supervisor:	H. Jeter
			Radiometric Re	Radiometric Results in pCi/g dry			
MSS No.	Identity	Depth, in	Pb-210	Cs-137	Be-7	Beta Count	Gamma Count
Pb0121-1	SED128(56-60)GC10122006	56-60	0.21 ± 0.08	< 0.038	< 0.47	11/09/06	11/19/06
Pb0121-2	SED138(0-2)GC10122006	0-2	1.17 ± 0.13	0.232 ± 0.051	< 0.57	11/09/06	11/19/06
Pb0121-3	SED138(2-4)GC10122006	2-4	0.62 ± 0.13	< 0.057	< 0.59	11/09/06	11/18/06
Pb0121-4	SED138(4-6)GC10122006	4-6	0.66 ± 0.12	< 0.065	< 0.93	11/09/06	11/18/06
Pb0121-5	SED138(6-8)GC10122006	6-8	0.34 ± 0.09	< 0.047	< 0.42	11/09/06	11/19/06
Pb0121-6	SED138(8-10)GC10122006	8-10	0.38 ± 0.10	< 0.054	< 0.52	11/09/06	11/20/06
Pb0121-7	SED138(10-12)GC10122006	10-12	0.32 ± 0.08	< 0.039	< 0.35	11/09/06	11/19/06
Pb0121-8	SED138(16-20)GC10122006	16-20	0.29 ± 0.07	< 0.042	< 0.66	11/09/06	11/21/06
Pb0121-9	SED138(24-28)GC10122006	24-28	0.36 ± 0.10	< 0.044	< 0.50	11/09/06	11/22/06
Pb0121-11	SED138(40-44)GC10122006	40-44	0.35 ± 0.08	< 0.035	< 0.46	11/09/06	11/20/06
Pb0121-13	SED138(56-60)GC10122006	56-60	0.50 ± 0.10	< 0.048	< 0.54	11/09/06	11/21/06
Pb0121-15	SED138(72-76)GC10122006	72-76	0.40 ± 0.10	< 0.033	< 0.56	11/09/06	11/21/06
Pb0121-17	SED138(88-92)GC10122006	88-92	0.39± 0.09	< 0.049	< 0.85	11/09/06	11/22/06
Pb0121-19	SED138(104-108)GC10122006	104-108	0.42 ± 0.08	< 0.038	< 0.47	11/09/06	11/22/06
	Target Detection Limits:	Pb-210 Cs-137 Be-7	0.1 pCi/g 0.1 pCi/g 1.0 pCi/g	Bismuth Beta Counting Method Gamma Spectral Analysis Gamma Spectral Analysis	nting Method Analysis Analysis		
Tolerances are : Detection limits	Tolerances are 2 sigma counting uncertainties. Detection limits are at the 4.66 sigma level.		-			Hewitt W. Jeter	V. Jeter

Division of Geonuclear, Inc	uclear, Inc				Work Order Pb0121	
Project Number:	64462.037	ł	Pb-210 Spike and Blank	ž		
MSS No.	Sample Identity	Matrix	Count Date	Pb-210 Result	Expected	Units
SSP-52	Soil Matrix Spike	Soil	11/09/06	10.79 ± 0.42	10.46 ± 0.10	pCi/g dry
WBL-77	Water Blank	Water	11/09/06	< 0.12	Non detect	pCi/g wet
	SSP-52 spike level: 9.84 pCi/g spike +	9.84 pCi/g spike +	(0.62 ± 0.10) pCi/g from matrix	from matrix =	10.46 ± 0.10 pCi/g expected	expected


REPORT OF LABORATORY CONTROL SAMPLES


×
3
~
m
p
Ē
Ø
ž.
Ξ.
đ
S
\sim
6
-
~
U.

Units	pCi/g wet	pCi/g wet pCi/g wet
Expected	19.605	Non detect Non detect
Cs-137 Result	19.247 ± 0.649	< 0.045 Be-7 < 0.31
Count Date	11/18/06	11/18/06
Matrix	Water	Water
Sample Identity	Water Spike	Water Blank
MSS No.	SPSPK-1	SPBKG-1

Core 123 collected 10/04/06

Mass Spec Services Sediment Chronology Interpretation

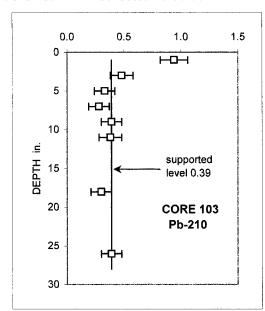
Pb-210 Chronology

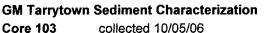
Supported Pb-210 was measured near 0.66 pCi/g dry as the average of all values deeper than 6 inches. Fitted curve: Y=-0.0672X + 0.1159 Correlation R square: 0.86 2 sigma slope tolerance: ± 0.0549 Inferred sedimentation rate: $-0.01352 / -(0.0672 \pm 0.0549) =$ 0.20 in/y

(0.11 - 1.10 in/y non-symmetric interval)

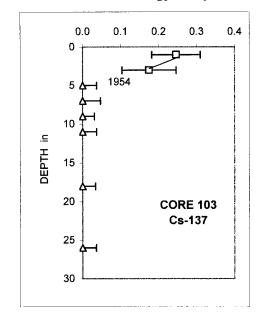
Cs-137 Chronology

The 1954 Cs-137 horizon lies between 7 and 9 inches depth, giving a sedimentation rate between 0.13 and 0.17 in/y: 0.15 ± 0.02 in/y


No 1963 maximum is clearly defined when the tolerances of measurement are considered.


Preferred Sedimentation Rate =

0.15 ± 0.02 in/y


Based on the 1954 Cs-137 horizon. This chronology marker yields a narrower range of sedimentation rates than does the Pb-210 method at this station.

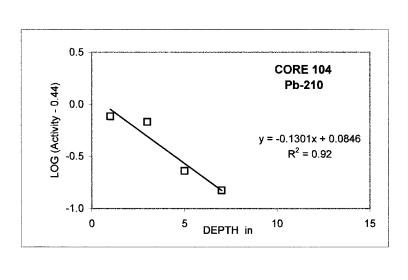
Depth in	Pb-210	Cs-137	<u>Be-7</u>	Note:
0-2	1.70 ± 0.14	0.186 ± 0.074	< 0.37	No Be-7 was detected. Because of
2-4	1.61 ± 0.15	0.199 ± 0.034	< 0.28	its short half life of 53 days, Be-7
4-6	1.22 ± 0.13	0.185 ± 0.049	< 0.35	is only detectable within the last
6-8	0.65 ± 0.11	0.092 ± 0.049	< 0.37	half year. This would correspond
8-10	0.69 ± 0.11	< 0.037	< 0.32	to 0.075 inches depth using the
10-12	0.72 ± 0.11	< 0.036	< 0.29	calculated sedimentation rate of
16-20	0.78 ± 0.11	< 0.031	< 0.35	0.15 in/y. Thus, Be-7 in a thin surface
24-28	0.69 ± 0.11	< 0.049	< 0.32	layer would be diluted by mixing with
32-36	0.54 ± 0.10	< 0.037	< 0.39	the rest of the 0-2 inch sample to
40-44	0.76 ± 0.10	< 0.028	< 0.31	produce a concentration below the
48-52	0.73 ± 0.10	< 0.028	< 0.34	detection limit.
56-60	0.77 ± 0.11	< 0.042	< 0.40	
64-68	0.72 ± 0.09	< 0.034	< 0.34	
72-76	0.54 ± 0.09	< 0.024	< 0.23	
80-84	0.48 ± 0.09	< 0.017	< 0.29	
88-92	0.54 ± 0.10	< 0.031	< 0.22	H. Jeter
96-100	0.33 ± 0.07	< 0.036	< 0.37	10/23/2006

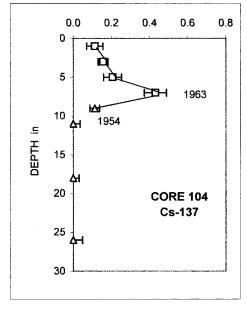
Mass Spec Services Sediment Chronology Interpretation

Pb-210 Chronology

Supported Pb-210 was measured near 0.39 pCi/g dry by the average of all values deeper than 2 inches. Only the surface (0-2 inch) sample is significantly elevated in Pb-210. No regression line can be drawn. The Pb-210 method of chronology cannot be used unless multiple thinner samples are analyzed in the shallowest few inches of depth.

Cs-137 Chronology


The 1954 Cs-137 horizon lies between 3 and 5 inches depth, giving a sedimentation rate between 0.06 and 0.10 in/y: 0.08 ± 0.02 in/y This is the preferred sedimentation rate. No 1963 maximum is clearly defined with the present data.


<u>Depth in</u>	Pb-210	<u>Cs-137</u>	<u>Be-7</u>	<u>Note:</u>
0-2	0.94 ± 0.12	0.246 ± 0.064	< 0.39	No Be-7 was detected. Because of
2-4	0.48 ± 0.10	0.175 ± 0.071	< 0.22	its short half life of 53 days, Be-7
4-6	0.33 ± 0.09	< 0.037	< 0.34	is only detectable within the last
6-8	0.28 ± 0.09	< 0.047	< 0.23	half year. This would correspond
8-10	0.39 ± 0.09	< 0.031	< 0.30	to 0.04 inches depth using the
10-12	0.38 ± 0.10	< 0.037	< 0.28	calculated sedimentation rate of
16-20	0.30 ± 0.09	< 0.034	< 0.28	0.08 in/y. Thus, Be-7 in a thin surface
24-28	0.39 ± 0.09	< 0.036	< 0.31	layer would be diluted by mixing with
32-36	0.40 ± 0.10	< 0.043	< 0.24	the rest of the 0-2 inch sample to
40-44	0.38 ± 0.09	< 0.047	< 0.26	produce a concentration below the
48-52	0.46 ± 0.09	< 0.031	< 0.26	detection limit.
56-60	0.41 ± 0.09	< 0.036	< 0.30	
64-68	0.41 ± 0.09	< 0.034	< 0.26	
72-76	0.39 ± 0.11	< 0.032	< 0.32	
80-86	0.39 ± 0.09	< 0.022	< 0.23	

H. Jeter 10/25/06

Core 104 collected 10/05/06

Mass Spec Services Sediment Chronology Interpretation

Pb-210 Chronology

Supported Pb-210 was measured near 0.44 pCi/g dry as the average of all values deeper than 8 inches. Fitted curve: Y=-0.1301X + 0.0846 Correlation R square: 0.92 2 sigma slope tolerance: ± 0.0538 Inferred sedimentation rate: $-0.01352 / -(0.1301 \pm 0.0538) = 0.10$ in/y

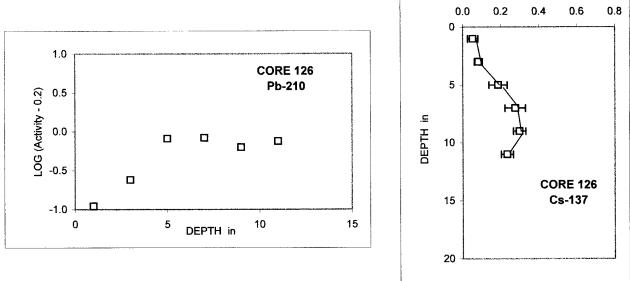
(0.07 - 0.18 in/y non-symmetric interval)

Cs-137 Chronology

The 1954 Cs-137 horizon lies between 9 and 11 inches depth, resulting in a sedimentation rate between 0.17 and 0.21 in/y: 0.19 ± 0.02 in/y

A 1963 maximum is found between 5 and 9 inches depth, resulting in a sedimentation rate between 0.116 and 0.209 in/y: 0.16 ± 0.05 in/y

Preferred Sedimentation Rate = 0.19 ± 0.02 in/y


Based on the 1954 Cs-137 horizon. This chronology marker yields the narrowest range of sedimentation rates and is in statistical agreement with the other two rate estimates.

<u>Depth in</u>	<u>Pb-210</u>	<u>Cs-137</u>	<u>Be-7</u>	Note:
0-2	1.21 ± 0.12	0.113 ± 0.043	< 0.37	No Be-7 was detected. Because of
2-4	1.12 ± 0.11	0.157 ± 0.026	< 0.31	its short half life of 53 days, Be-7
4-6	0.67 ± 0.10	0.207 ± 0.047	< 0.27	is only detectable within the last
6-8	0.59 ± 0.10	0.431 ± 0.058	< 0.36	half year. This would correspond
8-10	0.44 ± 0.08	0.113 ± 0.025	< 0.31	to 0.095 inches depth using the
10-12	0.48 ± 0.09	< 0.031	< 0.24	calculated sedimentation rate of
16-20	0.41 ± 0.08	< 0.037	< 0.30	0.19 in/y. Thus, Be-7 in a thin surface
24-28	0.42 ± 0.09	< 0.032	< 0.32	layer would be diluted by mixing with
32-36	0.47 ± 0.11	< 0.040	< 0.51	the rest of the 0-2 inch sample to
40-44	0.41 ± 0.13	< 0.047	< 0.58	produce a concentration below the
48-52	0.44 ± 0.12	< 0.037	< 0.49	detection limit.

H. Jeter 11/21/06

Mass Spec Services Sediment Chronology Interpretation

Core 126 collected 10/10/06

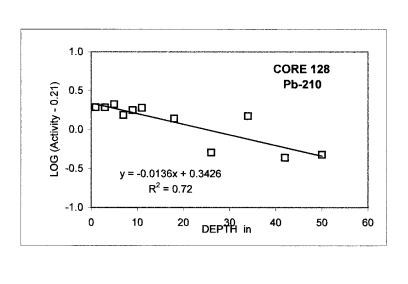
Pb-210 Chronology

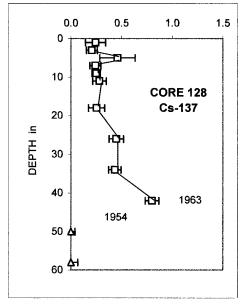
Supported Pb-210 is assumed to be near 0.2 pCi/g dry as measured in core 128. This core is short in length because of sediment refusal in the sampling process. In addition, the samples contain significant quantities of fine sand, rock fragments, and cinders in addition to silt. No trend in Pb-210 is found which could be interpreted for sediment chronology.

Cs-137 Chronology

Cs-137 was detected in samples from the surface to the maximum sampling depth of 10 - 12 inches. The 1954 Cs-137 horizon appears to lie deeper than 11 inches. On this basis, the calculated sedimentation rate is **greater than 0.21 in/y**.

Although the Cs-137 profile suggests a maximum near 8 inches depth, it could not be confirmed unless deeper measurements were avaailable.


Preferred Sedimentation	Rate =	Greater than 0.21 in/y
Based on the 1954 Cs-137	' horizon v	which appears to be deeper than 11 inches.


Depth in	<u>Pb-210</u>	<u>Cs-137</u>	<u>Be-7</u>	Note:
0-2	0.31 ± 0.11	0.053± 0.027	< 0.45	No Be-7 was detected. Because of
2-4	0.44 ± 0.12	0.082± 0.021	< 0.35	its short half life of 53 days, Be-7
4-6	1.01 ± 0.14	0.186± 0.048	< 0.44	is only detectable within the last
6-8	1.03 ± 0.13	0.276± 0.054	< 0.48	half year. It is expected that
8-10	0.83 ± 0.15	0.299± 0.033	< 0.36	Be-7 in a thin surface layer would
10-12	0.95 ± 0.14	0.234± 0.032	< 0.39	be diluted by mixing with the rest of the 0-2 inch sample to produce a concentration below the detection limit.

H. Jeter 11/21/06

Core 128 collected 10/12/06

Mass Spec Services Sediment Chronology Interpretation

Pb-210 Chronology

Supported Pb-210 was measured near 0.21 pCi/g dry in the deepest sample at 56-60 in. Fitted curve: Y = -0.0136X + 0.3429 Correlation R square: 0.72 2 sigma slope tolerance: ± 0.0056 Inferred sedimentation rate: $-0.01352 / -(0.0136 \pm 0.0056) = 0.99$ in/y

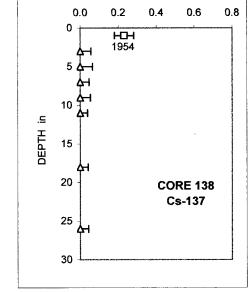
(0.70 - 1.70 in/y non-symmetric interval)

Cs-137 Chronology

The 1954 Cs-137 horizon lies between 42 and 50 inches depth, resulting in a sedimentation rate between 0.81 and 0.96 in/y: **0.88 ± 0.08 in/y**

A 1963 maximum is found between 34 and 50 inches depth, resulting in a sedimentation rate between 0.79 and 1.16 in/y: 0.98 ± 0.19 in/y

Preferred Sedimentation Rate = 0.88 ± 0.08 in/y


Based on the 1954 Cs-137 horizon. This chronology marker yields the narrowest range of sedimentation rates and is in statistical agreement with the other two rate estimates.

<u>Depth in</u>	Pb-210	<u>Cs-137</u>	Be-7	Note:
0-2	2.15 ± 0.27	0.244± 0.099	< 1.12	No Be-7 was detected. Because of
2-4	2.14 ± 0.17	0.207± 0.053	< 1.02	its short half life of 53 days, Be-7
4-6	2.33 ± 0.19	0.460± 0.175	< 1.05	is only detectable within the last
6-8	1.75 ± 0.14	0.242± 0.055	< 0.64	half year. This would correspond
8-10	1.99 ± 0.16	0.250± 0.042	< 0.39	to 0.44 inches depth using the
10-12	2.12 ± 0.14	0.283± 0.067	< 0.66	calculated sedimentation rate of
16-20	1.60 ± 0.15	0.254± 0.080	< 0.65	0.88 in/y. Thus, Be-7 in a thin surface
24-28	0.72± 0.09	0.448± 0.071	< 0.71	layer would be diluted by mixing with
32-36	1.71 ± 0.15	0.434± 0.036	< 0.49	the rest of the 0-2 inch sample to
40-44	0.65 ± 0.10	0.801± 0.068	< 0.30	produce a concentration below the
48-52	0.69 ± 0.10	< 0.041	< 0.39	detection limit.
56-60	0.21 ± 0.08	< 0.038	< 0.47	

H. Jeter 11/29/06

Mass Spec Services Sediment Chronology Interpretation

Core 138 collected 10/12/06 0.0 0.2 0 нон 1954 0.5 5 **CORE 138** Pb-210 LOG (Activity - 0.38) 0.0 10 DEPTH in -0.5 15 -1.0 y = -0.1126x - 0.0871 20 $R^2 = 0.64$ -1.5 2 ⁴DEPTH in ⁶ 8 10 0

Pb-210 Chronology

Supported Pb-210 was measured near 0.38 pCi/g dry as the average of all values deeper than 6 inches. Fitted curve: Y = -0.1126X - 0.0871 Correlation R square: 0.64 2 sigma slope tolerance: ±0.1687 Inferred sedimentation rate: -0.01352 / -(0.1126 ± 0.1687) = 0.12 in/y

(0.05 - infinite in/y non-symmetric interval)

Cs-137 Chronology

Cs-137 was detected in the surface (0 - 2 inch) sample but not a greater depths. The 1954 Cs-137 horizon appears to lie between 1 and 3 inches, resulting in a calculated sedimentation rate between 0.02 and 0.06 in/y: 0.04 ± 0.02 in/y.

No 1963 maximum is defined with the existing sample spacing at shallow depths.

Preferred Sedimentation Rate = 0.04 ± 0.02 in/y.

Based on the 1954 Cs-137 horizon. This chronology marker yields a narrower range of sedimentation rates than does the Pb-210 method.

<u>Depth in</u>	<u>Pb-210</u>	<u>Cs-137</u>	<u>Be-7</u>	Note:
0-2	1.17 ± 0.13	0.232 ± 0.051	< 0.57	No Be-7 was detected. Because of
2-4	0.62 ± 0.13	< 0.057	< 0.59	its short half life of 53 days, Be-7
4-6	0.66 ± 0.12	< 0.065	< 0.93	is only detectable within the last
6-8	0.34 ± 0.09	< 0.047	< 0.42	half year. This would correspond
8-10	0.38 ± 0.10	< 0.054	< 0.52	to 0.02 inches depth using the
10-12	0.32 ± 0.08	< 0.039	< 0.35	calculated sedimentation rate of
16-20	0.29 ± 0.07	< 0.042	< 0.66	0.04 in/y. Thus, Be-7 in a thin surface
24-28	0.36± 0.10	< 0.044	< 0.50	layer would be diluted by mixing with
40-44	0.35 ± 0.08	< 0.035	< 0.46	the rest of the 0-2 inch sample to
56-60	0.50 ± 0.10	< 0.048	< 0.54	produce a concentration below the
72-76	0.40 ± 0.10	< 0.033	< 0.56	detection limit.
88-92	0.39 ± 0.09	< 0.049	< 0.85	
104-108	0.42 ± 0.08	< 0.038	< 0.47	H. Jeter
				11/29/06